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Abstract v

Controlling False Discovery Proportion in Structured Data Sets
Abstract

The present work proposes new methodologies for controlling the False Discovery Proportion (FDP)
while accommodating different types of data structures arising from the underlying scientific context.
Since the seminal work of Benjamini and Hochberg (1995) (BH) introducing the FDP, multiple testing
procedures have found widespread applications across diverse domains. The BH procedure has facilitated
the identification of significant variables within large data sets, providing insights to scientific questions
in fields such as biology, medicine, or marketing research, by ensuring guarantees on the proportion of
false discoveries. However, the BH procedure has several limitations, among which e.g. the fact that it
is most effective for uniform p-values under the null; it is developed within a batch framework requiring
simultaneous availability of all p-values; the false discoveries control guarantee is only in expectation.
These limitations can lead to a range of unfavorable outcomes – spanning from reduced interpretability,
loss of statistical power, to potential inflation of the Type I error rate – particularly in contexts where
we perceive the data as possessing inherent "structure." This work aims to push back those limits
by providing new procedures and methodologies that adapt to settings where p-values can be discrete,
online, preordered, or weighted. This ultimately gives the practitioner more effective tools for identifying
significant variables in structured data sets as we illustrate in various numerical experiments.

Keywords: multiple testing, discrete p-values, online p-values, weighted p-values, preordered p-values,
(m)FDR control, FDP confidence bounds, plug-in FDR control

Résumé

Ce travail propose de nouvelles méthodologies pour contrôler la proportion de fausses découvertes (FDP)
tout en prenant en compte différentes types de structures de données résultant du contexte scientifique
sous-jacent. Depuis le travail fondamental de Benjamini and Hochberg (1995) (BH) introduisant le FDP,
les procédures de tests multiples ont trouvé une application dans de nombreux domaines. La procédure de
BH a facilité l’identification de variables significatives dans de grands ensembles de données, permettant
de répondre à des questions scientifiques dans des domaines tels que la biologie, la médecine ou le
marketing, tout en fournissant des garanties sur la proportion de fausses découvertes. Toutefois, la
procédure de BH présente plusieurs limites : elle est plus efficace pour des p-valeurs uniformes sous
l’hypothèse nulle ; elle est développée dans un cadre offline nécessitant la connaissance simultanée de
toutes les p-valeurs ; la garantie de contrôle des fausses découvertes est en espérance. Ces limitations
peuvent entraîner une perte de puissance, une réduction de l’interprétabilité, voire même une inflation
de l’erreur de Type I dans différents contextes où les données sont considérées comme "structurées". Ce
travail vise à combler ces lacunes en fournissant de nouvelles procédures et méthodologies qui s’adaptent
à des contextes structurels où les p-valeurs peuvent être discrètes, en ligne, pré-ordonnées ou pondérées.
Cela donne, in fine, au praticien des outils plus efficaces pour identifier les variables significatives dans
un ensemble de données structurées, comme nous l’illustrons dans diverses expériences numériques.

Mots clés : tests multiples, p-valeurs discrètes, p-valeurs en ligne, p-valeurs pondérées, p-valeurs ordon-
nées, contrôle du (m)FDR, bornes de confiance pour le FDP, contrôle du plug-in FDR
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In this chapter, we start by motivating our work with concrete applications and models for which
multiple decisions should be made. In Section 1.2, we formalize the Multiple Testing (MT) setting
and present a review of the existing research in the field. Then, in Section 1.3, we outline the
particular settings of interest in our work pertaining to certain p-value structures and discuss
the challenges associated with them. Finally, we provide an overview of the subsequent chapters,
and summarize their contents in Section 1.4.

1.1 Multiplicity in scientific research

1.1.1 Application examples

In many applications, scientists face complex problems for which insights are gained by answering
multiple questions of the same nature. We briefly describe several examples of such applications

1



2 CHAPTER 1. Introduction

to exemplify the notion of multiplicity in scientific research endeavors.

Clinical trials Clinical trials are research studies that assess a medical, surgical, or behavioral
intervention on a given group of people. These trials allow researchers to determine if a new
form of treatment or prevention (e.g., a new drug, diet, or medical device) is safe and effective.
For instance, to market a new drug, pharmaceutical companies investigate what different side
effects the new drug is associated with. Since many possible side effects are considered, multiple
assessments need to be provided, for more detailed examples, see e.g. Chapter 1 of Dmitrienko
et al. (2009). Such associations are also investigated for already marketed drugs with pharma-
covigilance systems. These systems collect and monitor spontaneous reports of suspected adverse
events for a number of marketed medicines. As a case in point, Chavant et al. (2011) study the
association between drugs and amnesia.

Molecular biology In molecular biology, modern high-throughput technologies have allowed
scientists to collect precise genotypic information at different scales containing tens or hundreds
of thousands of measurements (see e.g. Uffelmann et al. (2021) for a description of the data
collection process). These high-resolution datasets paved the way for a better understanding of
associations between the genome and biological traits (e.g., diseases or phenotypic expressions).
In this context, a massive amount of variables representing genetic information are investigated
for associations with a specific trait. Nowadays, a number of such datasets are publicly avail-
able by consortiums of scientists. This is the case e.g. for the International Mice Phenotyping
Consortium (IMPC) which aims at understanding the genotype effect on the phenotype of mice
through gene knock-out studies, see Muñoz-Fuentes et al. (2018) for more details.

Neuroscience Brain mapping helps to associate regions of the brain with cognitive function
or disorders to allow neuroscientists gain a better understanding of the brain and its diseases.
More precisely, the goal is to identify regions of the brain that are active when a person performs
a certain task or when a person’s senses are stimulated. For this, functional Magnetic Resonance
Imaging (fMRI) technologies provide images of the blood flow in the brain when the task or
stimuli of interest is performed. fMRI data are made up of 50 to 400 thousands of 3D pixels called
voxels. For specific regions of interest, the magnitude of these voxels are compared altogether
with reference measures coding for the inactivity of the corresponding brain regions. Examples
of such data are made available by Gorgolewski et al. (2015) and for recent studies on brain
mapping using fMRI see e.g. Varoquaux et al. (2018) or Nowinski (2021).

Astrophysics Detecting exoplanets, stars or ultra faint galaxies involves comparing measures
of candidate sources with reference benchmarks. For instance, when working with astrophysical
images, measures can refer to pixel magnitudes in multi-wavelength. In such contexts, one goal
is to detect celestial objects of interest that could stand out by local highlights. However, these
highlights can also be caused by instrumental noisy artifacts so the detection of new objects can
be erroneous. Instances of such astrophysical data are provided by the multi-unit spectroscopic
explorer (MUSE), see Bacon et al. (2010) for more details. See Dumusque et al. (2012); Mary
et al. (2020) for detailed studies on exoplanet and ultra-faint galaxy detection.

In all these applications, a common objective is to identify a set of items (drugs, genes,
brain regions, galaxies) that seem relevant to tackle the underlying scientific problem. While
the general aim is to identify precisely that set of items, sub-tasks may involve evaluating the
cardinal of that set (number of interesting items) or quantifying the number of false discoveries
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(items declared as interesting while they are not) within a selected subset. These tasks can be
undertaken using appropriate statistical models whose definitions are based on the nature of the
scientific problem.

1.1.2 Statistical modeling and P -values

Statistical testing is a classical tool used by the scientific community to address the aforemen-
tioned types of questions. The distinguishable feature of the applications of Section 1.1.1 is that
a potentially large number m > 1 of null hypotheses are considered simultaneously. This task is
referred to as Multiple Testing (MT) and can appear in a range of statistical models related to
different underlying scientific questions. We present two statistical models that can instantiate
an MT task. As we will solely focus on p-value based testing in this work, for each of these
models we briefly present how the p-values are generated.

Two sample tests Consider a variable Y coding for a given outcome (e.g. medication side ef-
fects, or phenotypic trait), and another variable X coding for a potentially correlated cause (e.g.
new drug, or gene allele). Investigating the association between Y and X can be formulated as
a statistical testing problem, where the null hypothesis declares no association between the vari-
ables. A classical approach to carry out this test is with two-sample testing where observations
of Y are collected from two different random and independent populations that differ in terms
of the value of X. In general, the specific test used (e.g., χ2-test, Fisher’s Exact Test (FET),
Student’s t-test) depends on the data structure (categorical or continuous) and the underlying
distributional assumption. For binary counts, FET is suitable and we present it in more detail
as it will also appear in further discussions.

FETs are used for data summarized in a 2 × 2 contingency table when investigating two
categorical variables (see Table 1.1). The rows in the matrix represent two different groups
where the potential correlated cause X is either observed or not. For example, in medical
studies, individuals from the control group are given a placebo (X = 0), while individuals from
the case group are given the new drug (X = 1). The columns in the matrix indicate the observed
counts of the outcome variable Y within each respective group. For instance, Y = 1 codes the
occurrence of a side effect, while Y = 0 indicates that no side effect was observed.If there is no
association and the columns and rows totals are treated as fixed, the distribution of the entries –
n11, n12, n21, n22– can be described according to a hypergeometric distribution. Then, an exact
(non-asymptotic) p-value is computed by summing probabilities corresponding to tables, having
the same margins, which are at least as extreme under the null as the one observed.

Y = 1 Y = 0 Total
X = 0 n11 n12 n1·
X = 1 n21 n22 n2·
Total n·1 n·2 n

Table 1.1: Example of 2× 2 contingency table for association study

As motivated in Section 1.1.1, association studies can be designed to investigate several
numbers of variables X1, . . . , Xm for potential association with one or different outcomes Y ’s,
consequently providing multiple 2 × 2 contingency tables, and thus multiple p-values, one for
each variable Xi, 1 ≤ i ≤ m, we want to test. This is typically the case for the aforementioned
IMPC dataset and for pharmacovigilance data, see respectively Karp et al. (2017) and Ahmed
et al. (2010) for results of particular studies using FETs.
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Gaussian linear model Consider Y ∈ Rn a response variable that one wants to predict from
explanatory variables X = (X1, . . . , Xm) ∈ Rn×m. A standard textbook model is the Gaussian
linear model written as

Y = Xβ∗ + ε,

where ε ∼ N (0, σ2In) is the noise, with a possibly unknown variance σ2 > 0 , and β∗ ∈ Rm is the
unknown parameter of interest. The gaussian linear model is one of the vanilla statistical models
used in many domains including genomics, see e.g. Wu and Ye (2006); Yang et al. (2017b). In
this context, one classical goal is to identify the non-zero entries of β. Indeed, a non-null entry
β∗i of β∗ indicates that variable Xi is active in the model i.e. that there is an interaction between
Y and Xi, making the latter appropriate for the regression. Identifying the non null entries
of β∗ can be performed via MT: for each variable Xi, j ∈ {1, . . . ,m} test the null hypothesis
H0,i : βi = 0 against the alternative H1,i : βi 6= 0.

In high dimensional statistics, where m ≈ n or m � n this task is more difficult so that
sparsity is classically assumed, implying that β∗ contains only a few non-zero entries, which
means that only a few variables in X = (X1, . . . , Xm) are in fact necessary to predict Y . While
both the Ordinary Least Squares (OLS) and LASSO estimators of Tibshirani (1996) can gener-
ate test statistics to carry out the MT task, they have specific limitations. The OLS model is
not suitable for high-dimensional settings. The LASSO estimator is better under the sparsity
assumption but does not provide distributional information for the test statistic under the null
hypothesis, see Giraud (2021) for more details. To counteract these limitations, Barber and
Candès (2015) propose an approach that involves augmenting the model with so-called “knock-
offs” of the covariates X = (X1, . . . , Xm) and performing the LASSO on this augmented model.
Artificial binary p-values are then constructed to indicate the sign of the test statistic built by
comparing the estimated values of β∗ for the true variables with those for the knockoff variables.

MT tasks also arise in other contexts. For instance, reliable classification can be performed
using conformal p-values generated empirically using non-conformity scores with respect to a
null reference set, see e.g. Bates et al. (2023) or Marandon et al. (2022) and references therein
for more details. MT can also occur in non-parametric density estimation to gain point-wise
knowledge about the density function, see e.g. Blanchard et al. (2014).

1.2 Multiple testing and false discovery control

MT has been developed to assess multiple statistical inferences simultaneously. These methods
avoid an excessive number of false conclusions, corresponding to false rejections of the null
hypothesis called false discoveries/rejections. To formally discuss the challenges induced by
multiplicity we first introduce the general setting.

1.2.1 Setting

Denote the observations by X which is a random variable (r.v) generated by an unknown dis-
tribution P that belongs to a set P of possible distributions. Consider m null hypotheses for
P , denoted H0,i, 1 ≤ i ≤ m. Let the corresponding set of true null hypotheses denoted by
H0(P ) = H0 = {1 ≤ i ≤ m : H0,i is satisfied by P}, and denote by m0(P ) = m0 = |H0(P )| the
number of true nulls. Denote H1(P ) = H1 the complement set of H0 in {1, . . . ,m} containing
the false nulls (also referred to as alternatives or signal). We assume that there exists a set of
p-values defined as a set of r.v : {pi(X), 1 ≤ i ≤ m}, with each pi = pi(X) ∈ [0, 1] summarizing
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the evidence against the corresponding null hypothesis H0,i. The smaller the p-value pi is, the
more evidence we have to support the rejection of the null hypothesis H0,i.

In p-value based testing, the decision to reject (or not) null hypotheses is made by comparing
p-values with thresholds often called critical values. In single testing, the critical value corre-
sponds to the prespecified testing level α ∈ (0, 1). To perform a valid test based on a p-value
p = p(X) ∈ [0, 1], the latter needs to be super-uniform under the null, meaning stochastically
larger than the uniform distribution under the null, which can be formally stated as

PX∼P (p(X) ≤ u) ≤ u, for all u ∈ [0, 1], when P satisfies H0 (SuperUnif)

Super-uniformity is a core defining property for the validity of the test: for a nominal level
α ∈ (0, 1) and a rejection decision taken by 1p≤α, verifying (SuperUnif) allows to bound the
probability of falsely rejecting the null hypothesis, i.e. the Type I error probability, by α.

In MT, using the same level α to test the m hypotheses would lead to a considerable number
of false discoveries even though the individual Type I error probabilities of each test would be
bounded by α. This fact is concealed until all the decisions are assessed jointly. As a matter of
fact, assuming all hypotheses to be true nulls (complete null setting) with identically uniform
p-values yields on average a number of false rejections equal to E

[∑m
j=1 1pj≤α

]
= mα which can

be extremely large. This puts forward the need to correct the decision.
We define a MT procedure as a function R : [0, 1]m → P({1, . . . ,m}) that, provided the m

p-values, returns a subset R ⊂ {1, . . . ,m} containing indices for the rejected null hypotheses.
Sometimes, a procedure can be identified to the set of critical values {αi}1≤i≤m it designs,
corresponding to individual Type I error levels tailored for each hypothesis. The goal is to reject
as many as false nulls possible while controlling the amount of false discoveries. This is similar
to the Neyman-Pearson paradigm in single testing: MT procedures first focus on controlling the
number of false discoveries over all the performed tests, using an error criterion accounting for a
global Type I error. While maintaining this global Type I risk bounded by a pre-specified level
α ∈ (0, 1), the procedure aims at rejecting correctly as much as possible, i.e. to be as powerful
as possible.

1.2.2 Family-Wise Error Rate (FWER) control

Perhaps the earliest criterion introduced, that we can trace back to the work of Tukey (see
Benjamini and Braun (2002)) is the Family-Wise Error Rate (FWER). It is defined as the
probability of making at least one false rejection among all the decisions:

FWER(R) = P(|R ∩H0| ≥ 1), (1.1)

where we recall that R denotes the rejection set returned by the MT procedure. By controlling
the FWER at level α we control the occurrence of any error with high probability: we are
(1− α)% confident that there is no false discovery within the rejection set R. Thus, FWER has
a clear interpretation that supports its use. For instance, it is a criterion of interest in medical
research where the Food and Drug Agency strictly regulates research findings before allowing a
new drug to be marketed, see Dmitrienko et al. (2009) for more details.

Nevertheless, in other contexts, FWER could be too stringent since by preventing any false
discovery with high probability it also limits at the same time the total number of discoveries.
This fact can be clearly illustrated with the most popular FWER controlling procedure, the
so-called Bonferroni procedure which tests each individual hypothesis at level α/m to return
R = {i : pi ≤ α

m}. In words, the Bonferroni correction divides the global level α by the number
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of tested hypotheses m. Thus the testing levels shrink fast when m is large which prevents
the procedure from being powerful. Other more powerful FWER controlling procedures were
proposed by Šidák (1967), and Holm (1979) but the field took a new turn with the innovative
work of Benjamini and Hochberg (1995).

1.2.3 False Discovery Rate (FDR) control

The work of Benjamini and Hochberg (1995) introduces a new way of accounting for the number
of errors that scales with the number of tests performed. For any rejection set R, the False
Discovery Proportion (FDP) is defined as the ratio between the number of false discoveries
within R and the number of discoveries/rejections |R|:

FDP(R) =
|R ∩H0|
1 ∨ |R|

. (1.2)

Since the rejection set R is random, so is FDP(R), ant it cannot be directly used as a criterion.
Thus Benjamini and Hochberg (1995) consider controlling the expectation of the FDP – called
the False Discovery Rate (FDR) – at level α ∈ (0, 1) and propose an MT procedure to do so
assuming independent p-values. The BH procedure works by ordering the p-values in ascending
order p(1), . . . , p(m) and set k̂ = sup{k ∈ {1, . . . ,m} : F̂DPk ≤ α }, where F̂DPk =

p(k)m

k . Then,
the k̂ first smallest p-values are rejected, i.e. RBH = {i ∈ {1, . . . ,m} : p(i) ≤ p(k̂)} (and the
procedure rejects nothing if the set is empty). An equivalent description of k̂ can be given as
follows: the ordered p-values p(1), . . . , p(m) are compared with the corresponding critical values
αk = αk

m , 1 ≤ k ≤ m until p(k) ≤ αk happens for the last time, which corresponds to the index k̂.
The work of Benjamini and Hochberg (1995) has gained significant recognition since its in-

troduction, accumulating around 100000 citations today on Google Scholar. It enjoys popularity
not only within the field of statistics itself but also across various scientific domains such as
biology, medicine, and economics, as shows Figure 1.1.

Figure 1.1: Number of papers per research field where the terms “False discovery rate control”
appear from 1995 to 2023 according to the Web of Science.
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Expanding on the work of Benjamini and Hochberg (1995), subsequent efforts have been
made in the literature to refine the procedure. A first axis is on extending the dependency
assumptions under which the BH procedure controls the FDR. Indeed, the seminal work analyses
the procedure under the assumption of independent p-values which is far from being realistic in
scientific applications. Then, Benjamini and Yekutieli (2001) proved that BH is still conservative
when the p-value family verifies a specific type of positive dependence. Beyond that, for arbitrary
dependence, they propose the Benjamini-Yekutieli (BY) procedure which corresponds to the BH
procedure run for the shrunk level α/(1 + 1

2 + · · ·+ 1
m ). This procedure, although being free of

the independence assumption is not popular as the number of rejections can be worse than the
one of Bonferroni. Providing results accounting for the dependence structure is still interesting
up to now. Recently, assuming a specific type of weak negative dependence between the p-values,
Chi et al. (2022) propose a sharper upper bound than the one of BY.

Another avenue of improvement is dedicated to the power enhancement of the BH procedure
to allow for more discoveries. A simple and effective way to do this is to adapt the procedure to
the quantity of signal by incorporating an estimator of the proportion of nulls, see Section 1.4.3
for more details and references. Another way to enhance the power is by using weighted p-
values which incorporate additional information about the practitioner’s confidence in the null
hypotheses, see Section 1.3.3 for more details.

Beyond its direct practical relevance, the work of Benjamini and Hochberg (1995) has proven
to be valuable in deriving tools for non-parametric MT. Indeed, the FDP and the mathematical
tools associated with it are helpful in formulating procedures that are applicable in contexts
where p-values are unavailable, see e.g. the works of Sun and Tony Cai (2009) or Barber and
Candès (2015). Furthermore, it is also helpful to build connections with the field of machine
learning for reliable prediction, see the recent work of Marandon et al. (2022) and references
therein.

Overall, the work of Benjamini and Hochberg (1995) introduced a novel criterion that is more
liberal allowing the number of errors to grow with the number of rejections, see (1.2). The liberal
aspect highly contributed to the popularity of the criterion as it resonates with the flexibility
sought after by researchers in certain domains.

1.2.4 False Discovery Proportion (FDP) stochastic control

A stochastic control of the FDP means controlling the FDP of a rejection set below a cer-
tain level with high probability. Regarding this guarantee, two distinctions can be made in the
literature. One line of research aims at building a rejection set R that has an FDP below a
pre-specified level α ∈ (0, 1) with probability 1 − δ, where δ ∈ (0, 1) is a pre-specified coverage
parameter. This task is referred to as “FDP/FDX control”. Another strand of the literature
focuses on deriving confidence bounds on the FDP valid for a given family of rejection sets R.

For FDP control, the goal is to control the False Discovery Exceedance (FDX) defined as

FDX(R) = P(FDP(R) ≤ α) ≥ 1− δ,

where R denotes the rejection set returned by the procedure and α, δ ∈ (0, 1) are pre-specified.
In words, FDX control involves controlling the (1 − δ)-quantile of the FDP at a pre-specified
level α ∈ (0, 1). To this end, novel procedures are built like the one proposed by Lehmann and
Romano (2005) and Guo and Romano (2007) later improved by Döhler and Roquain (2020) for
discrete settings (a setting described in more detail in Section 1.3.1). Since stochastic control
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is more involved than control in expectation, procedures controlling the FDX have usually less
power than the BH procedure but in return one can gain a broader insight into the FDP distri-
bution. FDX control is relevant in practice when scientists want to profit from the liberal aspect
of the FDP but at the same time have stronger guarantees than the FDR, see e.g. the work of
Tan et al. (2019).

For FDP bounds, one wishes for tools to evaluate the quality of a specific rejection set family.
Confidence bounds can be tailored for a given set Π of rejection sets. Formally, the goal is to
provide a confidence envelope, i.e. a function FDP valued in (0, 1) that takes a subset R and
returns an upper bound of FDP(R) that verifies

P(for any R ∈ Π,FDP(R) ≤ FDP(R)) ≥ 1− δ, (1.3)

for a pre-specified δ ∈ (0, 1). For instance, Π can be the path of Top-k rejection subsets i.e.
Π = {Rk, 1 ≤ k ≤ m} where Rk = {i : p(i) ≤ p(k)}, or the set of all possible rejection sets, i.e.
Π = P({1, . . . ,m}).

These guarantees are qualified as posthoc since bounds holding uniformly over a family of re-
jection set allows for a valid analysis even by choosing R after looking at the data. For instance,
scientists can initially analyze the Top-10 p-values, and based on those results, decide to expand
the analysis to the Top-15 p-values if the findings are not conclusive. Alternatively, scientist may
desire to analyze selection set, not necessarily designed using the p-values but using auxilliary
statistics, which is allowed whenever (1.4.1) holds with Π = P({1, . . . ,m}). Posthoc guarantees
are very desirable in practice e.g. in biology where scientists can be confronted with an over-
whelming choice of genes to test. In this context, exploring different selection sets is helpful to
narrow down the research scope, allowing scientists to focus on a reduced set of genes for further
investigation in confirmatory research. This viewpoint was popularized by the innovative work
of Goeman and Solari (2011) who shed light on the importance of providing posthoc guarantees
to better align with the way scientists work.

The literature on exploratory MT is well established with notables works of Meinshausen and
Bühlmann (2005), Meinshausen (2006), Genovese and Wasserman (2006), Goeman and Solari
(2011) or more recently Blanchard et al. (2020), among others.

1.3 P -value structures

In this section, we present different p-value structures that are of interest throughout our
work. These structures arise from different underlying data-generating contexts and require de-
sign of appropriate procedures to enhance power or to avoid power loss. To better understand
the specificities or the challenges related to each structure of interest we first define a “canonical
structure”, roughly corresponding to the baseline setting described in Section 1.2.1.

Canonical structure Our canonical structure refers to the classical setting of Benjamini and
Hochberg (1995) where p-values are available all together as a batch and have uniform marginal
distributions under the null. The batch availability is advantageous because all the relevant
information is accessible simultaneously. Also, marginally uniformly distributed p-values is the
best case scenario to avoid over-conservativeness as we further explain in the following section.

1.3.1 Super-uniform p-values

As mentioned in Section 1.2.1, super-uniformity is a core property for the validity of statistical
tests. When the p-value is not uniform, i.e. when the inequality in (SuperUnif) is strict, the
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p-value is more conservative than needed. Indeed, when (SuperUnif) is verified, we know that
the probability of making a Type I error for the corresponding hypothesis is actually less or equal
to αi:

PX∼P (pi(X) ≤ αi)︸ ︷︷ ︸
= Type I error probability

= α̃i ≤ αi, for all αi ∈ (0, 1), and P ∈ P with i ∈ H0.

When the effective level α̃i is strictly smaller than the nominal level αi, it means that the testing
level αi is not exhausted. Consequently, the individual power is in some sense capped as we
are in reality testing at a smaller level than what is allowed by the procedure. One solution
is to enlarge the nominal level to effectively attain the Type I error probability, which requires
information on the distribution of the p-values under the null. Thus, in this setting we assume
that the underlying model P contains known functions Fi, 1 ≤ i ≤ m such that:

PX∼P (pi ≤ u) ≤ Fi(u) ≤ u, for all u ∈ [0, 1], and P ∈ P with i ∈ H0. (1.4)

While deriving such Fi can be difficult in classical contexts (e.g. when testing composite nulls
for Gaussian means where H0: µ ≤ 0, with µ denoting the mean), explicit null bounds Fi are
available in other specific contexts that we further describe in what follows.

Discrete p-values Discrete test statistics appear whenever dealing with categorial variables
describing counts. One instance of such tests is FET described in Section 1.1.2, producing a
discrete p-value with a finite support on [0, 1]. Other instances of discrete tests include the
Poisson test for parametric settings or Mann-Whitney and Wilcoxon tests for non-parametric
settings, see e.g. Hirji (2005) or Rousson (2013) for detailed examples.
In this context, each p-value pi has a finite support Si that is known and independent of P and
satisfies (1.4) with Fi taken as the right continuous step function that jumps at each point of
Si and Fi(u) = u only when u ∈ Si, as illustrated in Figure 1.2. The knowledge of these upper
bounds Fi can be used to compensate the power loss caused by the super-uniformity, see e.g.
Döhler et al. (2018) or Döhler and Roquain (2020) for some recent works in this setting.

Self-imposed super-uniformity with constrained weighting We describe the classical
setting of p-value weighting in Section 1.3.3 and present here a version where the weights are
constrained to be less than 1. Assume that the base p-values pi, 1 ≤ i ≤ m are uniformly
distributed, and denote ri > 0, 1 ≤ i ≤ m the raw, i.e. non processed, weights. Denote
wi, 1 ≤ i ≤ m the corresponding processed weights such that wi ∈ (0, 1), 1 ≤ i ≤ m. The
preprocessing constrains the weights to be less than 1 and consequently enforces super-uniformity
of the p-values. Indeed, each weighted p-value is defined as p̃i = pi

wi
so that the c.d.f under the

null is

PX∼P (p̃i ≤ u) = PX∼P (pi ≤ uwi) = uwi =: Fi(u) ≤ u, for all u ∈ [0, 1], 1 ≤ i ≤ m, (1.5)

where the last inequality stands because wi ∈ (0, 1). See Figure 1.3 for an illustration of the
weighted c.d.f under the null.
In classical p-value weighting, the weights wi are only constrained to sum to m, so that weighted
p-values can be smaller or larger than their original p-values. More precisely, when well chosen,
large weights are associated with confident alternative hypotheses so that a power enhancement
can be expected from the weighting scheme. By contrast, here the weighted p-values are always
larger (i.e. less significant) than the original p-values. This scheme seems counter-intuitive
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Figure 1.2: Examples of Fi functions in the discrete setting (colored solid lines) and standard
Uniform c.d.f (black dashed line).

but this enforced conservativeness can help to better manage the allocation of the overall error
level α across all hypotheses in some contexts. For instance, this proves to be beneficial in
situations where the classical p-value weighting strategy is unfeasible, as in the online setting
(see Chapter 2).

1.3.2 Online p-values
This structure pertains to the temporal availability of the p-values. In the online setting, null
hypotheses are formulated sequentially over time for an unknown duration. Thus, p-values are
only available one by one, with an overall number of testsm unknown beforehand and potentially
infinite. This scenario models modern applications such as perpetual clinical trials where an
ever-growing number of new treatments are continuously emerging and tested against a baseline
control treatment as described by James et al. (2008). Similarly, tech companies also perform
A/B testing dealing with thousands of hypotheses formulated one by one over time to look e.g.
for the best layout of a website, see e.g. Berman et al. (2018) for more details. To perform MT
in an online setting, one approach could be to run the BH procedure over and over again as each
new p-value is made available. In that case, for a prespecified level α ∈ (0, 1), one would first run
a single test for the first p-value p1, then once p2 is available, rerun BH at level α for p1 and p2,
then once p3 is available, rerun BH at level α for p1, p2 and p3, and so on. However, performing
this naive online procedure could break the FDR control and lead to conflicting decisions over
time: at one time the BH procedure can reject a null hypothesis while being unable to reject it
at subsequent times. The unstable nature of the decisions can be very costly – as some rejections
might involve follow-up pricy investigations – or greatly perturb the overall understanding as
some non-rejections can lead to state novel hypotheses. This concern highlights the need to
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Figure 1.3: Examples of Fi functions in the constrained weighting setting (colored solid lines)
and standard Uniform c.d.f (black dashed line).

make irrevocable decisions using procedures specifically designed for the online setting. Several
recent works propose such procedures, see Robertson et al. (2022) for an exhaustive review on
the topic listing several online error rates and procedures to control them.

1.3.3 Covariates

In practice, a natural aspiration is to integrate valuable insights from the underlying domain,
or past experiments into the current decision. In this setting, the challenge is to efficiently
incorporate this knowledge without corrupting the control of false discoveries. This knowledge
can be incorporated in different ways, and we describe below the cases where it is incorporated
in the ordering of the p-values and in their magnitude.

Preordered p-values In this setting, an ordering of the null hypotheses is pre-specified, thus
providing a batch of preordered p-values. The preorder can be caused by the underlying math-
ematical model, as is the case when using the knockoff approach of Barber and Candès (2015)
for variable selection in the Gaussian linear model. Alternatively, the preorder can also come
from the domain knowledge. For instance, in molecular biology, biologists often have some prior
knowledge or intuition about which genes are more likely to be associated with the biological
trait of interest.

The preordering aims at putting hypotheses that are the most favorable to be rejected first.
However, this information might not be translated in the magnitude of the p-values so running a
BH procedure – which involves ordering the p-values in ascending order – could ruin the intended
preordering. Specific procedures for the preordered setting have been proposed by Li and Barber
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(2017), and more recently by Lei and Fithian (2016) with a procedure more robust to the quality
of the ordering.

Weighted p-values Incorporating weights wi > 0, 1 ≤ i ≤ m, coding the practitioner’s con-
fidence in the rejection can help to reject false nulls more efficiently. The testing decision is
taken on the weighted p-value pi

wi
instead of the (raw) p-value pi. For confident nulls we expect

small weights to enlarge the p-values making them more conservative to avoid rejecting them.
Conversely, for confident alternatives we expect large weights to shrink the p-values making them
more inclined to rejection. In this context, two questions arise at first sight: (i) How to incorpo-
rate the weights without compromising the overall Type I error control? (ii) How to obtain these
weights ?

To address (i), Holm (1979) introduces a weighted Bonferroni procedure that controls the
FWER. Later, Benjamini and Hochberg (1997) provides a different approach by integrating
weighting into the error criterion for FDR control instead of integrating it into the p-values.
The current line of research on weighted MT follows the work of Genovese et al. (2006) who
investigates p-value weighting for FDR control and provides a sufficient condition on the weights,
which requires the sum of weights to be less than m for maintaining FDR control.

To address concern (ii) there are two main strands. First, weights can come from the underly-
ing domain knowledge. Indeed, useful external knowledge is often available in molecular biology,
as mentioned previously, or in neuroscience. Alternatively, another strand of the literature on
p-value weighting focuses on deriving weights using the available data. To give a brief review
we can cite the work of Roeder and Wasserman (2009) who derive optimal weights in the Gaus-
sian t-testing setting or the work of Roquain and Van de Wiel (2008) who derive oracle optimal
weights assuming that the alternative c.d.f of p-values are known. More recently, Ignatiadis et al.
(2016) and Durand (2019) propose to derive weights in the context of grouped hypothesis testing.

In a more comprehensive overview of these settings, a differentiation can be drawn based on
how the structure under consideration relates to multiplicity. Indeed, some structures are specific
to multiplicity whereas others are not. For instance, the discrete structure already appears at
the single testing level while the online or the preordered structures only exist in the context of
MT.

All the structures can influence the quality of the decisions taken in terms of power. In some
cases (e.g., discrete, online), the structure imposes additional constraints on the procedure and
the aim is to try to recover the unconstraint power as much as possible. In other situations,
like when dealing with covariates, the structure is beneficial and provides information on the
underlying true distribution P . In these cases, the aim is to improve the power of classical
procedures by incorporating the underlying structure.

In addition, the power of a procedure can also be influenced by a quantitative aspect of the
p-value family. Indeed, the prevalence of true nulls limits the power, i.e. it makes detection of
alternatives very difficult. By constrast, when the proportion of true nulls π0 = m0

m is small,
the power can be enhanced. These two scenarios correspond respectively to a sparse and dense
settings and are also investigated in our work.

1.4 Contributions

In this work we explore combinations of the aforementioned settings with three different MT
goals: control the online mFDR (Chapter 2), provide valid FDP envelopes (Chapter 3), and
control the plug-in FDR (Chapter 4). Broadly speaking, in each scenario the aim is to use the
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structural knowledge of the p-values to improve state-of-the-art procedures or tools for the MT
goal of interest.

P -value structure Chapter 2:
Online mFDR

Chapter 3:
FDP envelope

Chapter 4:
plug-in FDR

Canonical X X
Discrete X X
Online X X
Preordered X
Weighted X

Table 1.2: Visual summary of the structures studied in each chapter of the manuscript.

1.4.1 Super-uniformity reward

In Chapter 2 we address the two following questions: (i) How to improve the efficiency of current
Online Multiple Testing (OMT) procedures when dealing with discrete p-values ? (ii) How to
incorporate external knowledge in OMT procedures using p-value weighting?

Roughly speaking, an online procedure works as a budgeting scheme that sequentially allo-
cates an amount αt ∈ (0, 1) of the desired global level α ∈ (0, 1), to test any new hypothesis
that comes up at time t ≥ 1. As with classical MT procedures, the allocation scheme is designed
with the aim of rejecting most of the false nulls while controlling an online error criterion that
monitors the number of false discoveries at any time point. In our work, we focus on the online
FWER and mFDR formally defined as follows:

FWER(A, P ) := sup
T≥1
{FWER(T,A, P )}, FWER(T,A, P ) := PX∼P

(
|H0 ∩R(T )| ≥ 1

)
;

mFDR(A, P ) := sup
T≥1
{mFDR(t,A, P )}, mFDR(T,A, P ) :=

EX∼P (|H0 ∩R(T )|)
EX∼P (1 ∨ |R(T )|)

,

where A = {αt, t ≥ 1} denotes the procedure (identified to the sequence of critical values), and
R(T ) = {t ∈ {1, . . . , T} : pt(X) ≤ αt} denotes the set of rejection times of the procedure A, up
to time T .

In recent years, the literature on OMT has grown substantially to introduce performant proce-
dures, see Robertson et al. (2022) for further details on the methodology and an extensive review
of the existing literature. The existing procedures are most efficient when dealing with uniform
p-values under the null, however some (significant) parts of the individual budgets {αt}t≥1 can be
wasted when dealing with discrete p-values due to super-uniformity as described in Section 1.3.1.
While discreteness can appear in plenty of scenarios (see Section 1.3.1), no solution has been
proposed up to now to deal with the super-uniformity issue in the OMT setting.

To deal with discrete p-values, classical approaches in the offline literature attempt to address
the conservativeness of discrete p-values with randomization techniques, see e.g. Habiger (2015)
(see also Section 4.5.1 of Chapter 4 for more details and references). While these methods can be
theoretically effective, they also introduce reproducibility and interpretability issues which is a
major drawback in practice. Recent approaches, e.g. proposed by Döhler et al. (2018), introduce
methods that use known null bounds on the p-values c.d.f to correct the loss of power due to
super-uniformity. However, these offline solutions are not readily applicable to the online setting.
As a result, the need for an online procedure tailored for discrete p-values is still to be addressed.
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To address this need, we introduce “rewarded” versions of some classical online procedures
that compensate for the power loss caused by the super-uniformity of discrete p-values. These
rewarded procedures have two components corresponding to the initial procedure combined with
an additional quantity called the super-uniformity reward. The super-uniformity reward repre-
sents the gap between the nominal and the effective level that we are able to calculate using the
distributional knowledge on the p-value c.d.f. More formally, it is defined as

ρt = ρt(αt, Ft) := αt − Ft(αt), t ≥ 1. (1.6)

where αt ∈ (0, 1) is the nominal testing level at time t, and Ft is the known c.d.f of p-value pt
under the null. Since (1.4) holds under super-uniformity, we know that the effective level – i.e.
the level attained in reality – is equal to Ft(αt) rather than the intended αt. Thus, ρt can be
interpreted as the unused amount of testing level at time t. This quantity is added in subsequent
testing times as a reward to help uplift the next critical values to improve the power. This first
part of the work addresses question (i).

To address question (ii), we show that our rewarding method allows to seamlessly handle
p-value weighting in the online framework. In the offline setting, “raw” weights ri ≥ 0 need to
be rescaled to average to 1 to maintain FDR control. However, this sufficient condition cannot
be satisfied in the online context because the weights are only available one by one across time.
Ramdas et al. (2017) present sufficient criteria for weighting procedures controlling the (m)FDR
and also discuss the technical challenges associated with weighted online multiple testing. We
propose another approach that relies on the super-uniformity reward. Our method works by
constraining the weights to be less than 1, as described in Section 1.3.1, which imposes super-
uniformity so that our method described to address point (i) can be applied.

1.4.2 Consistent FDP bounds

Chapter 3 focuses on the question: How to provide sharp FDP confidence bounds that are
tailored for rejections sets of FDR controlling procedures?

As mentioned in Section 1.2.3, probabilistic guarantees on the FDP are appealing for several
reasons: they are stronger than guarantees on the expectation of the FDP, they provide dis-
tributional information on the FDP, and they can give the practitioner freedom to choose the
selection set to analyze. In this context, Katsevich and Ramdas (2020) propose new confidence
envelopes, i.e. a sequence of confidence bounds (FDPk, k ≥ 1) tailored for rejection sets follow-
ing a path Π = (Rk, k ≥ 1) in three different p-value settings taking into account the canonical
(Section 1.3.1), online (Section 1.3.2), and pre-ordered (Section 1.3.3) structures. These bounds
are valid uniformly over the path Π = (Rk, k ≥ 1), i.e. they verify

P(∀k ≥ 1,FDP(Rk) ≤ FDPk) ≥ 1− δ,

where FDP(Rk) = |Rk∩H0|
|Rk|∨1 is the FDP of the set Rk, and δ ∈ (0, 1) is a pre-specified coverage

parameter.
In each of the three settings, the path Π is a family of rejection sets built to contain an FDR

controlling procedure’s output. For instance, in the canonical setting, the rejection sets are built
following the Top-k path with Rk = {i : p(i) ≤ p(k)}, which includes BH rejection set when k = k̂
(defined in Section 1.2.3). Katsevich and Ramdas (2020) show that their new bounds improve
classical bounds so-called Simes derived by Robbins (1954) or DKW derived by Massart (1990)
– in various regimes. The work of Katsevich and Ramdas (2020) bridges the gap between FDR
and FDP by proposing FDP bounds for FDR controlling procedures. However, it appears that
their bounds are tailored for the context where the number of rejections is small. As the number
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of rejections grows, their FDP bounds can deviate significantly from the actual FDP value for
certain rejection sets. As a case in point, in the canonical setting, considering the BH rejection
set denoted as Rk̂, existing bounds yield FDPk̂ = α.c where c > 1, see Section 3.2.1 for more
details. Since c is an incompressible constant even when m tends to infinity, the bound can be
far above α which is suboptimal. Indeed, concentration arguments imply that the FDP should
closely align with its expected value, namely the FDR (equal to απ0 for BH). Thus, these bounds
can be described as not “consistent”.

In Chapter 3, we formalize the aforementioned consistency notion and we develop new confi-
dence envelopes that are consistent, for each of the three p-value settings of interest mentioned
above. We further analyze the consistency of our novel and previous bounds in sparse settings
where the amount of signal is weak (π0 close to 1).

1.4.3 Unifying class of null proportion estimators

In Chapter 4, we focus on the question: How to adjust existing π0 estimators to discrete p-values
while maintaining plug-in FDR control?

Plug-in FDR control refers to the FDR control for the adaptive BH procedure where an
estimator of π0, the proportion of null hypotheses, is used to adjust the critical values to allow
for more rejections. More specifically, when plugging in the estimator, the BH thresholds are
αk = αk

π̂0
≥ αk

m , : 1 ≤ i ≤ m, where the r.h.s corresponds to the base thresholds of the BH
procedure (see Section 1.2.3), α ∈ (0, 1) is the desired control level for the FDR, and π̂0 is the
estimated proportion of null hypotheses. The additional source of randomness present in the
estimation needs to be accounted to avoid breaking the FDR control. Thus, estimators need to
verify some conditions to be valid for plug-in FDR control. In our work, we focus on the sufficient
criterion introduced in the works of Benjamini et al. (2006) and Blanchard and Roquain (2009),
which focus on bounding the inverse moment of the estimator.

In the past, adaptivity to the number of true null hypotheses has been extensively studied,
with various works proposing estimation methods and investigating corresponding plug-in FDR
control. To give a rough timeline we can mention the work of Storey et al. (2004), who were the
first to propose an estimation method for π0 coupled with FDR plug-in control thus marking
a notable milestone in the area. Then, Pounds and Cheng (2006) introduced another type of
estimation method that does not require any parameter tuning and that has a version tailored
for the discrete setting. However, their estimator lacks theoretical guarantees regarding plug-in
FDR control making it less appealing for practitioners.

The current line of work has two main limitations. First, some of the estimators lack theo-
retical guarantees for plug-in FDR control. Second, most of the proposed estimators have been
derived assuming the canonical setting described in Section 1.3, making them less efficient when
applied to other settings, like the one of discrete p-value described in Section 1.3.1. Along with
the work of Pounds and Cheng (2006), the works of Chen et al. (2018) and Biswas and Chat-
topadhyay (2020) address the discreteness issue for estimation purposes but they either lack
plug-in FDR control or are not better than other classical estimators e.g. like Storey et al.
(2004).

In Chapter 4, we aim to bridge these gaps by introducing a new class of estimators that not
only encompasses previously proposed estimators but also allows for defining new estimators.
This class of estimators comes with mathematical guarantees for plug-in FDR control and offers
the flexibility to incorporate adjustments to the p-value distribution without compromising the
plug-in control. These adjustments can sometimes significantly improve the performance of
the estimators in the discrete setting without requiring sophisticated parameter tuning. The
theoretical guarantees are established based on convex ordering arguments, which in essence,
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provide moment ordering of random variables.

Outline of the manuscript Each chapter is independent and self-contained therefore the
notations may vary from chapter to chapter. For each chapter, the proofs are given in the
associated appendices. We give the status quo of the chapters below.

• Chapter 2 is a joint work with Sebastian Döhler (Hochschule Darmstadt) and Etienne
Roquain (Sorbonne Université). In revision for the Electronic Journal of Statistics.

• Chapter 3 is a joint work with Gilles Blanchard (Université Paris Saclay) and Etienne
Roquain. It has been submitted for publication.

• Chapter 4 is a joint work with Sebastian Döhler. It has been submitted for publication.
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Valid online inference is an important problem in contemporary multiple testing research, to
which various solutions have been proposed recently. It is well-known that these existing methods
can suffer from a significant loss of power if the null p-values are conservative. In this work, we
extend the previously introduced methodology to obtain more powerful procedures for the case
of super-uniformly distributed p-values. These types of p-values arise in important settings,
e.g. when discrete hypothesis tests are performed or when the p-values are weighted. To this
end, we introduce the method of super-uniformity reward (SUR) that incorporates information
about the individual null cumulative distribution functions. Our approach yields several new
’rewarded’ procedures that offer uniform power improvements over known procedures and come
with mathematical guarantees for controlling online error criteria based either on the family-
wise error rate (FWER) or the marginal false discovery rate (mFDR). We illustrate the benefit
of super-uniform rewarding in real-data analyses and simulation studies. While discrete tests
serve as our leading example, we also show how our method can be applied to weighted p-values.

javanmard2018online

2.1 Introduction

2.1.1 Background

Multiple testing is a well-established statistical paradigm for the analysis of complex and large-
scale data sets, in which each hypothesis typically corresponds to a scientific question. In the
classical situation, the set of hypotheses should be pre-specified before running the statistical
inference. However, in contrast to the former ’offline’ setting, in many contemporary applications
questions arise sequentially. A first instance of such sequential application is when testing a single
null hypothesis repeatedly as new data are collected, as for continuous monitoring of A/B tests
in the information technology industry or marketing research, see Kohavi et al. (2013); Johari
et al. (2019) and references therein, or Howard et al. (2021) for recent developments. A second
situation is when the null hypotheses are (potentially) different and arise in a continuous stream,
and accordingly decisions have to be made one at a time and prior to the termination of the
stream. This is generally referred to as the online multiple testing (OMT) framework and is
the focus of this paper, see, e.g., Lark (2017); Robertson et al. (2019); Kohavi et al. (2020) for
application examples. This second situation also occurs in combination with the first one to form
a ‘doubly-sequential’ experiment (Ramdas, 2019).

2.1.2 Existing literature on online multiple testing

The literature aiming at control of various error rates in OMT has grown rapidly in the last few
years. As a starting point, the family-wise error rate (FWER) is the probability of making at
least one error in the past discoveries, and a typical aim is to control it at each time of the stream
(for a formal definition of this and other error rates, see Section 2.2.2). Since controlling FWER
at a given level α is a strong constraint, it requires employing a procedure that is conservative,
thus generally leading to few discoveries. The typical strategy is to distribute over time the
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initial wealth α, e.g., testing the i-th test at level αγi for a sequence {γi}i≥1 summing to 1. This
approach is generally referred to as α-spending in the literature (Foster and Stine, 2008).

A less stringent criterion is the false discovery rate (FDR), which corresponds to the expected
proportion of false discoveries. This versatile criterion allows many more discoveries than the
FWER and has known a huge success in offline multiple testing literature since its introduction
by Benjamini and Hochberg (1995), both from a theoretical and practical point of view. In their
seminal work on OMT, Foster and Stine (2008) extended the FDR in an online setting by consid-
ering the expected proportion of errors among the past discoveries (actually, considering rather
the marginal FDR, denoted below by mFDR, which is defined as the ratio of the expectations,
rather than the expectation of the ratio). The novel strategy in Foster and Stine (2008), which is
called α-investing, is based on the idea that an mFDR controlling procedure is allowed to recover
some α-wealth after each rejection, which slows down the natural decrease of the individual test
levels. In subsequent papers, many further improvements of this method have been proposed:
first, the α-investing rule has been generalized by Aharoni and Rosset (2014), while maintaining
marginal FDR control. Later, Javanmard and Montanari (2018) establish the (non-marginal)
FDR control of these rules, including the LORD (Levels based On Recent Discovery) procedure.
Then, a uniform improvement of LORD, called LORD++, has been proposed by Ramdas et al.
(2017), that maintains FDR/mFDR control while extending the theory in several directions
(weighting, penalties, decaying memory).

Extensions to other specific frameworks have been proposed, including rules that allow asyn-
chronous online testing (Zrnic et al., 2021), maintain privacy (Zhang et al., 2020), and accom-
modate a high-dimensional regression model (Johnson et al., 2020). Other online error criteria
have also been explored, with false discovery exceedance (Javanmard and Montanari, 2018; Xu
and Ramdas, 2021), post hoc false discovery proportion bounds (Katsevich and Ramdas, 2020),
or confidence intervals with false coverage rate control (Weinstein and Ramdas, 2020).

Since the online framework is more constrained than the offline framework, the employed
procedures are generally less powerful in that context. Hence, another important branch of the
literature aims at proposing improved rules that gain more discoveries: first, following the classi-
cal ’adaptive’ offline strategy, procedures can be made less conservative by implicitly estimating
the amount of true null hypotheses, see the SAFFRON procedure for FDR and the adaptive-
spending procedure for FWER. Second, under an assumption on the null distribution, increasing
the number of discoveries is possible by ’discarding’ tests with a too large p-value (Ramdas et al.,
2018; Tian and Ramdas, 2021, 2019).

A power enhancement can also be obtained by combining online procedures with other meth-
ods. A natural idea is to use more sophisticated individual tests in the first place, e.g., based on
multi-armed bandits (Yang et al., 2017a), or so-called ’always valid p-values’, see Johari et al.
(2019) and references therein. Another idea is to combine offline procedures to form ’mini-batch’
rules, see Zrnic et al. (2020). Further improvements are also possible by incorporating contextual
information as done by Chen and Kasiviswanathan (2020) or using local FDR-like approach, see
Gang et al. (2020). Lastly, performance boundaries have been derived by Chen and Arias-Castro
(2021).

2.1.3 Super-uniformity

This paper consider OMT in the setting of super-uniformly distributed p-values (defined in detail
in Section 4.2). Super-uniformity may originate from various sources. The first main example
we have in mind, and which has been extensively investigated in the statistical literature, is
super-uniformity arising from discrete p-values (described in detail in Section 2.5). Additionally,
we show that super-uniformity can also be used in a more indirect way as a device for dealing
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with online p-value weighting. In the offline setting, this is a powerful and extensively studied
approach, which has, however, in the online case, received little attention so far (described in
detail in Section 2.6).

Discrete tests often originate when the tests are based on counts or contingency tables, for
example:

• in clinical studies, the efficiency or safety of drugs are compared by counting patients who
survive a certain period after being treated, or who experience a certain type of adverse
drug reaction;

• in biology, the genotype effect on the phenotype can be tested by knocking out genes
sequentially in time.

The latter case is met for instance with the data from the International Mouse Phenotyping
Consortium (IMPC, see Muñoz-Fuentes et al. (2018)), which contains many categorical variables,
and thus are described with counts and contingency tables. While this data set is frequently used
(see e.g., Tian and Ramdas, 2021; Xu and Ramdas, 2021; Karp et al., 2017), the classical OMT
procedures do not exploit the discrete nature of the tests, and it turns out that much more
powerful procedures can be developed, see Section 2.5.3.

In the literature, different solutions have been proposed for dealing with the conservatism of
discrete tests, the most straightforward one being randomization (see Habiger (2015) and refer-
ences therein). While this approach possesses attractive theoretical properties, randomization is
usually unacceptable in practice (Lehmann and Romano, 2022). An active research area explores
this phenomenon in the offline multiple testing setting, with the seminal works of Tarone (1990);
Westfall and Wolfinger (1997); Gilbert (2005) and the subsequent studies of Heyse (2011); Heller
and Gur (2011); Dickhaus et al. (2012); Habiger (2015); Chen et al. (2015); Döhler (2016); Chen
et al. (2018); Döhler et al. (2018); Durand et al. (2019), see also references therein. The present
work shows that such an improvement is also possible in the online setting, as far as FWER or
mFDR control is concerned.

Error rate Procedure Critical values Results
FWER OB αOB

T = αγT Tian and Ramdas (2021)
AOB αAOB

T = α(1− λ)γT (T ) Tian and Ramdas (2021)

mFDR LORD αLORD
T =W0γT + (α−W0)γT−τ1

+ α
∑
j≥2

γT−τj

Javanmard and Montanari (2018)
and Ramdas et al. (2017)

ALORD αALORD
T = (1− λ)·

(
W0γT0(T ) + (α−W0)γT1(T )

+ α
∑
j≥2

γTj(T )

) Ramdas et al. (2018)
(slightly improved)

Table 2.1: Overview of the critical values of the base procedures for some choice of level α ∈ (0, 1),
adaptivity parameter λ ∈ [0, 1), initial wealth W0 ∈ (0, α), and spending sequence (γj)j≥1. The
quantities T (·), τj , Tj(·) are given by (2.16), (B.14), (2.26), respectively.

Finally, weighting p-values is a well-established and popular approach for improving the
performance of offline multiple testing procedures. It can be traced back to Holm (1979) and
has been further developed, in, e.g., Genovese et al. (2006); Wasserman and Roeder (2006);
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Rubin et al. (2006); Blanchard and Roquain (2008); Roeder and Wasserman (2009); Hu et al.
(2010); Zhao and Zhang (2014); Ignatiadis et al. (2016); Durand (2019); Ramdas et al. (2019)
with weights that can be driven for instance by sample size, groups, or more generally by some
covariates. By approaching the problem from the perspective of super-uniformity, our general
method also allows seamless and flexible integration of such weighting schemes in an online
context.

Error rate Procedure Critical values Results

FWER ρOB αρOB
T = αOB

T +

T−1∑
t=1

γ′T−tρt Theorem 2.3.1

ρAOB αρAOB
T = αAOB

T +
∑

1≤t≤T−1
pt>λ

γ′T−tρt + εT−1 Theorem 2.3.2

mFDR ρLORD αρLORD
T =αLORD

T +

T−1∑
t=1

γ′T−tρt Theorem 2.4.1

ρALORD αρALORD
T = αALORD

T +
∑

1≤t≤T−1
pt>λ

γ′T−tρt + εT−1 Theorem 2.4.2

Table 2.2: Overview of the critical values of the rewarded procedures denoted as the correspond-
ing base procedures, with an additional symbol “ρ” in the name. Here, αOB

T , αAOB
T , αLORD

T , αALORD
T

are the base procedures from Table 2.1 (with the adaptivity parameter λ defined there), ρt is
the super-uniformity reward at time t given by (2.8), γ′ is the SURE spending sequence defined
in Section 2.2.4 and εT = 1{pT < λ}(αT − α0

T ) is an additional adaptivity reward, for either
(α0
T , αT ) = (αAOB

T , αρAOB
T ), or (α0

T , αT ) = (αALORD
T , αρALORD

T ), depending on the case.

2.1.4 Contributions of the paper
In this paper, we propose uniform improvements of the classical base procedures listed in Ta-
ble 2.1, and prove control of the corresponding error rates. A distinguishing feature of our work
is that we assume that a (non-trivial) upper bound for the null cumulative distribution function’s
(c.d.f.), called the null bounding family, is known (see Section 4.2). By combining this informa-
tion with base procedures, we construct more efficient OMT procedures (see Table 2.2). The
key quantity involved in this construction can be interpreted as a reward (more details will be
provided in Section 2.2.3) induced by the super-uniformity of the null bounding family. There-
fore, we use the acronym SUR (Super-Uniform-Reward) to refer to these new procedures. When
we use the uniform null bounding family (i.e., in the classical framework), our SUR procedures
reduce to their base counterparts. Our main contributions are as follows:

• We propose two new SUR procedures for online FWER control in Section 2.3: the first one
(ρOB) uniformly improves upon the Online Bonferroni procedure (OB), while the second
(ρAOB) uniformly improves upon the adaptive spending procedure of Tian and Ramdas
(2021) (AOB).

• We propose two new SUR procedures for online mFDR control in Section 2.4: the first one
(ρLORD) uniformly improves upon the LORD++ procedures of Javanmard and Montanari
(2018); Ramdas et al. (2017) (LORD), while the second one (ρALORD) uniformly improves
upon the SAFFRON procedure of Ramdas et al. (2018) (ALORD).
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• We present a general and simple way of constructing SUR procedures for any base pro-
cedure satisfying some mild conditions, see Section 2.3.4 for FWER and Section 2.4.4 for
mFDR. This allows us to obtain concise proofs for all our results, which are deferred to
the supplement, see Section A.1.

• Application to discrete data: we evaluate the performances of the new SUR procedures on
discrete data, with simulated experiments (Section 2.5.2) and for a classical real data set
(Section 2.5.3), where each hypothesis is tested using a (discrete) Fisher exact test. The
gain in power is shown to be substantial.

• Application to p-value weighting: our new SUR procedures can be used to derive weighted
online FWER and mFDR controlling procedures. The p-value weighting is carried out
by rescaling in a certain way the ’raw’ weights so that the weighted p-value distributions
become super-uniform and our methodology can be applied. The new online procedures
are shown to outperform existing ones both on simulated and real data (Section 2.6).

For easier readability of the paper, a succinct overview of our work is presented in Ta-
bles 2.1 and 2.2. It lists the base and SUR procedures and provides links to definitions and
results for error rate control. All our numerical experiments (simulations and application) are
reproducible from the code provided in the repository https://github.com/iqm15/SUREOMT.

2.1.5 Relation to adaptive discarding
As Tian and Ramdas (2019) pointed out, online multiple testing procedures frequently suffer
from significant power loss if the null p-values are too conservative. In Tian and Ramdas (2021)
(FWER control) and Tian and Ramdas (2019) (mFDR control), the authors propose adaptive
discarding (ADDIS) approaches as improved methods. In particular, an idea is to use a discard-
ing rule, that avoids testing a null when the corresponding p-value exceeds a given threshold. For
the particular type of super-uniformity induced by discrete tests, we show that the discarding
rule is less efficient than the SUR method, at least in the settings of Sections 2.5.2 and 2.5.3.

2.2 Preliminaries

2.2.1 Setting, procedure and assumptions
Let X = (Xt, t ∈ {1, 2, . . .}) be a process composed of random variables. We denote the dis-
tribution of X by P , which is assumed to belong to some distribution set P. We consider an
online testing problem where, at each time t ≥ 1, the user only observes variable Xt and should
test a new null hypothesis Ht, which corresponds to some subset of P, typically defined from the
distribution of Xt. We let H0 = H0(P ) = {t ≥ 1 : Ht is satisfied by P} the set of (unknown)
times where the corresponding null hypothesis is true. Throughout the manuscript, we focus on
decisions based upon p-values. Hence, we suppose that at each time t, we have at hand a p-value
pt = pt(X) ∈ [0, 1] (typically depending only on Xt although this is not necessary) for testing Ht,
and we consider online multiple testing procedures based on p-value thresholding. This means
that each null Ht is rejected whenever pt(X) ≤ αt, where αt ∈ [0,∞) is a nonnegative threshold,
called a critical value, that is allowed to depend on the past decisions. More precisely, we denote
Rt = 1{pt(X) ≤ αt}, Ct = 1{pt(X) ≥ λ} for all t ≥ 1 and assume that each αt is measurable
with respect to the σ-field Ft−1 = σ(R1, . . . , Rt−1, C1, . . . , Ct−1). Here, λ ∈ [0, 1] is a parameter
that is used for designing adaptive procedures. The particular non-adaptive case is obtained by
setting λ = 0, in which case Ft−1 = σ(R1, . . . , Rt−1).

https://github.com/iqm15/SUREOMT


2.2. Preliminaries 23

In the literature, this property is referred to as predictability, see Ramdas et al. (2017).
Throughout the manuscript, an online multiple testing procedure is identified with a family
A = {αt, t ≥ 1} of such predictable critical values. Let us now state the assumptions used in
what follows. First, recall the classical super-uniformity assumption:

PX∼P (pt(X) ≤ u) ≤ u for all u ∈ [0, 1], and P ∈ P with t ∈ H0, (2.1)

which means that each test rejecting H0,t when pt(X) is smaller than or equal to u is of level u.
Here, we typically consider a setting where these tests may have a more stringent level. Formally,
at each time t, there is a known null function Ft : [0, 1]→ [0, 1] satisfying

PX∼P (pt(X) ≤ u) ≤ Ft(u) ≤ u, for all u ∈ [0, 1], and P ∈ P with t ∈ H0. (2.2)

Note that we will sometimes also consider Ft(u) for u ≥ 1, in which it is to be understood as
Ft(u ∧ 1). The family F = {Ft, t ≥ 1} will be referred to as the null bounding family. Note
that (2.2) reduces to (2.1) when choosing Ft(u) = u for all u, but encompasses other cases
by choosing differently the null bounding family. Typically, for discrete tests, it is well-known
that Ft(u) can be (much) smaller than u, see Example 2.2.1 for more details. Second, another
important assumption is the online independence within the p-value process:

pt(X) is independent of the past decisions Ft−1 for all t ∈ H0 and P ∈ P. (2.3)

For instance, Assumption (2.3) holds in the case where pt(X) only depends on Xt and the
variables in (Xt, t ≥ 1) are all mutually independent, which means that the data are collected
independently at each time.

Remark 2.2.1 In this manuscript, results are often based on assumptions (2.2) and (2.3). In
all these results, these two assumptions can be replaced by the weaker condition

PX∼P (pt(X) ≤ u | Ft−1) ≤ Ft(u) ≤ u a.s. for all u ∈ [0, 1], for all t ∈ H0 and P ∈ P. (2.4)

When choosing the null bounding family Ft(u) = u for all u, the latter condition is sometimes
referred to as SuperCoAD (super-uniformity conditionally on all discoveries), see Ramdas et al.
(2017).

Throughout the paper, we investigate the two following prototypical examples of super-
uniformity.

Example 2.2.1 Our leading example is the case where a discrete test statistic is used for in-
ference in each individual test. Typical instances include tests for analyzing counts represented
by contingency tables, such as Fisher’s exact test, see Section 2.5.2. In discrete testing, each
p-value pt(X) has its own support St (known and not depending on P ), that is a finite set (or, in
full generality, a countable set with 0 as the only possible accumulation point). A null bounding
family satisfying (2.2) can easily be derived by considering Ft, the right-continuous step function
that jumps at each point of St, see Figure 2.2 below. Note that the support St depends on t so
that discrete testing also induces heterogeneity over time.

Example 2.2.2 Our secondary example is p-value weighting, where we start from continuous
p-values (uniform under the null), which are weighted using external a priori information in
order to increase power, see Section 2.6.
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2.2.2 Error rates and power

Let us define the criteria that we use to measure the quality of a given procedure A = {αt, t ≥ 1}.
For each T ≥ 1, let R(T ) = {t ∈ {1, . . . , T} : pt(X) ≤ αt} denote the set of rejection times of
the procedure A, up to time T . We consider the two following classical online criteria for type I
error rates:

FWER(A, P ) := sup
T≥1
{FWER(T,A, P )}, FWER(T,A, P ) := PX∼P

(
|H0 ∩R(T )| ≥ 1

)
; (2.5)

mFDR(A, P ) := sup
T≥1
{mFDR(T,A, P )}, mFDR(T,A, P ) :=

EX∼P (|H0 ∩R(T )|)
EX∼P (1 ∨ |R(T )|)

, (2.6)

with the convention 0/0 = 0. In words, when controlling the online FWER at level α, one has
the guarantee that, at each fixed time T , the probability of making at least one false discovery
before time T is below α. Since FWER control does not tolerate any false discovery (with high
probability), it is generally considered a stringent criterion. By contrast, when controlling the
online mFDR, at each time T , the expected number of false discoveries before time T can be non-
zero, but in an amount controlled by the expected number of discoveries. While online FWER has
been investigated in Tian and Ramdas (2021), online mFDR control is generally less conservative
(that is, allows more discoveries), and is widely used in an online context, see Foster and Stine
(2008); Ramdas et al. (2017, 2018). The false discovery rate (FDR) is close to the mFDR: it is
defined by using the expectation of the ratio, instead of the ratio of the expectations as in (2.6).
Controlling the FDR generally requires more assumptions, while mFDR is particularly useful in
an online context (we refer the reader to Section 1.1 of Zrnic et al. (2021) for more discussions
on this). For a given error rate, we aim at deriving procedures that maximize power. For any
procedure A, we define the power as the expected proportion of signal the procedure can detect,
that is,

Power(T,A, P ) :=
EX∼P (|H1 ∩R(T )|)

1 ∨ |H1|
, (2.7)

where H1 is the set of times of false nulls, that is, the complement of H0 in {1, 2, . . .}.
While this power notion will be used in our numerical experiments to compare procedures, our

theoretical results will use a stricter comparison criterion. For two procedures A = {αt, t ≥ 1}
and A′ = {α′t, t ≥ 1}, we say that A′ uniformly dominates A when α′t ≥ αt for all t ≥ 1 (almost
surely). This implies that, almost surely, A′ makes more discoveries than A, in the sense that
the set of discoveries of A is contained in the one of A′, that is, R(T ) ⊂ R′(T ) for all T ≥ 1
(a.s.). In particular, this implies the same domination for the true discovery sets and thus in
particular Power(T,A, P ) ≤ Power(T,A′, P ) for all T ≥ 1. With this terminology, we can restate
the aim of this work as follows: construct valid OMT procedures that uniformly dominate their
base procedures by incorporating the null bounding family Ft given in (2.2).

Remark 2.2.2 There is no consensus regarding the most adequate definition of power in online
testing literature. The concept of uniform domination that we use in this paper is much stronger
than, e.g., the asymptotic power considered by Javanmard and Montanari (2018). It may, how-
ever, not be particularly appropriate if the base procedure A is chosen poorly. Since the base
procedures given in Table 2.1 are standard in our settting, the domination criterion seems to be
reasonable.
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2.2.3 Wealth and super-uniformity reward

In the Generalized Alpha-Investing (GAI) paradigm (see Xu and Ramdas (2021) and the refer-
ences given therein), the nominal level α, at which one wants to control the type I error rate,
can be seen as an overall error budget – or wealth – that may be spent on testing hypotheses
in the course of an online experiment. For a given OMT procedure A, it is possible to define a
suitable wealth function W (T ) = W (T,A, P ), such that W (T ) represents the wealth available
at time T for further testing. As a case in point, Xu and Ramdas (2021) define the (nominal)
wealth function for the online Bonferroni procedure by W nom(T ) = α −

∑T
t=1 αγt. General-

izing this expression for arbitrary null distributions we obtain the ’true’ or ’effective’ wealth
W eff(T ) = α −

∑T
t=1 Ft(αγt), where Ft is a null-bounding function. In the super-uniform set-

ting, assumption (2.2) implies W nom(T ) ≤ W eff(T ), and as the two orange curves in Figure 2.1
illustrate, the discrepancy can be quite large.

Figure 2.1: Nominal wealth for OB (dashed orange curve), effective wealth for OB (solid orange
curve) and effective wealth for ρOB (solid green curve) for the male mice from the IMPC data
(see Section 2.5.3 for more details).

However, while the user thinks the procedure is spending the budget over time according to
the nominal wealth given by the dashed orange curve, in reality, the procedure is under-utilizing
wealth, as the solid orange true wealth curve indicates. This unnecessarily austere spending
behaviour makes the online Bonferroni procedure sub-optimal. In addition, this phenomenon
extends to the other procedures and error rates listed in Table 2.1 as well. Our proposed solution
incorporates super-uniformity so that its wealth function behaves more like the targeted nominal
wealth, as depicted by the green curve in Figure 2.1.

For incorporating super-uniformity, we introduce the super-uniformity reward (SUR), a key
quantity in our work. For any procedure A = {αt, t ≥ 1} and null bounding family F = {Ft, t ≥
1}, the super-uniformity reward ρt at time t is defined by

ρt = ρt(αt, Ft) := αt − Ft(αt), t ≥ 1. (2.8)

Note that (2.2) always implies ρt ≥ 0 for all t ≥ 1. In the case of discrete testing (Example 2.2.1),
we have Ft(αt) = 0 when αt is below the infimum of the support St. This produces the maximum
possible super-uniformity reward at time t, that is, ρt = αt. Conversely, when αt ∈ St, we have
Ft(αt) = αt and we have no super-uniformity reward at time t, that is, ρt = 0. In general, we
have ρt ∈ [0, αt], its actual value depending on the discreteness of the test (that is on the steps
of Ft) and of the value of αt. The super-uniformity reward is illustrated in Figure 2.2 for a single
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distribution Ft and value αt. Mathematically, ρt is simply the difference between the nominal

Figure 2.2: Super-uniformity reward ρt at time t (length of the vertical line) as defined by (2.8)
for a given function Ft (orange step function) and a critical value αt (triangle). The dashed line
is the identity function x ∈ [0, 1] 7→ x.

significance level αt and the truly achieved significance level Ft(αt). In terms of wealth, ρt can
be interpreted as the fraction of nominal significance level which the OMT procedure was unable
to ’spend’ due to super-uniformity. Intuitively, it seems clear that this amount can be put aside
and be re-allocated to the subsequent tests to increase the future critical values (αT , T ≥ t+ 1).
In Sections 2.3 and 2.4, we show in detail how this can be done without sacrificing type I error
control.

2.2.4 Spending sequences

As Table 2.1 displays, the base procedures we use are parametrized by a sequence γ = (γt)t≥1

of non-negative values, such that
∑
t≥1 γt ≤ 1, which we refer to as the spending sequence. The

spending sequence controls the rate at which the wealth is spent in the course of the online
experiment (for instance, see (2.10) for the online Bonferroni procedure). However, finding
suitable spending sequences is not trivial: there is a trade-off between saving wealth for large
values of T and the ability to make discoveries in the not-too-distant future. Typical choices for
γ in the literature are:

• γt ∝ t−q for all t for some q > 1, see Tian and Ramdas (2021);

• γt ∝ (t+ 1)−1 log−q(t+ 1) for all t, for some q > 1, see Tian and Ramdas (2021);

• γt ∝ log((t+1)∨2)

(t+1) exp(
√

log(t+1))
, see Javanmard and Montanari (2018).

Throughout the paper, we choose γt ∝ t−q with q = 1.6, as suggested by previous literature.
In the base procedures listed in Table 2.1, there are two potential sources of wealth: the initial
wealth invested at T = 0, and the rejection reward that can be earned by rejections for investing
procedures (i.e., mFDR controlling procedures). When one can use super-uniformity reward as
described in Section 2.2.3, an additional source of wealth comes into play. Indeed, our approach is
to use an additional SUR spending sequence γ′ to smoothly incorporate all the rewards collected
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up to time T to compute the new critical value αT . This SUR spending sequence could be chosen
for instance from one of the smoothing sequences listed above. Here, we focus on the following
choice:

γ′t = γ′t(h) = 1{t ≤ h}/h, t ≥ 1, (2.9)

where h ≥ 1 is a suitably chosen integer. Since this leads to procedures that spread rewards
uniformly over a finite horizon of length h, we refer to (2.9) – by analogy with non-parametric
density estimation – as a rectangular kernel with bandwidth h. Finally, another idea introduced
by Ramdas et al. (2018); Tian and Ramdas (2021) in order to slow down the natural decay in
the αt sequence is to consider γT (t) where T (t) is a slowed down clock, see (2.16) and (2.26)
below. As we will see in Section 2.3.3 and Section 2.4.3, this technique can also be combined
with a suitable super-uniformity reward.

2.3 Online FWER control

In this section, we aim at finding procedures A such that FWER(A, P ) ≤ α for some targeted
level α ∈ (0, 1). We begin with a simple application of our approach to improve the online Bon-
ferroni procedure with a ’greedy’ super-uniformity reward, and then turn to a smoother spending
of the super-uniformity reward (Theorem 2.3.1). This approach is then applied in combination
with the adaptive online procedure introduced by Tian and Ramdas (2021) (Theorem 2.3.2).
Finally, a general result is provided (Theorem 2.3.3) that allows to reward any procedure con-
trolling the online FWER in some specific way. This allows unifying all results obtained in this
section while further extending the scope of our methodology.

2.3.1 Warming-up: online Bonferroni procedure and a first greedy re-
ward

For any given spending sequence sequence γ = (γt)t≥1, a well-known online FWER controlling
procedure is the online Bonferroni procedure, AOB = AOB(α, γ) := {αOB

t , t ≥ 1}, defined by

αOB
T := αγT , T ≥ 1. (2.10)

It is also called Alpha-Spending rule (Foster and Stine, 2008) in the context of online FWER
control, see Tian and Ramdas (2021). It is straightforward to check that AOB controls the FWER
under the classical super-uniformity condition (2.1): by the Markov inequality, for all T ≥ 1,

FWER(T,AOB, P ) ≤ EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αγt}
)

(2.11)

≤
∑
t∈H0

PX∼P (pt ≤ αγt) ≤
∑
t∈H0

αγt ≤ α. (2.12)

Let us now present the rationale behind our approach in this simple case. Assume more generally
that we have at hand a null bounding family F = {Ft, t ≥ 1} satisfying (2.2). The above
reasoning leads to the following valid bound for any procedureA = {αt, t ≥ 1} (with deterministic
αt):

FWER(T,A, P ) ≤
T∑
t=1

Ft(αt) ≤ αT +

T−1∑
t=1

Ft(αt) = α

T∑
t=1

γt ≤ α, (2.13)
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by choosing αT =
∑T
t=1 αγt −

∑T−1
t=1 Ft(αt). The latter is a recursive relation that allows to

define a new procedure A = {αt, t ≥ 1} controlling the FWER. Since α1 = αγ1 and for T ≥ 2,
αT − αT−1 = αγT − FT−1(αT−1), this leads to the simple rule

αT = αγT + ρT−1, T ≥ 1, (2.14)

where ρT−1 = αT−1 − FT−1(αT−1) is the super-uniformity reward (2.8) at time T − 1 (with the
convention ρ0 = 0). In addition, from (2.2), we have ρT−1 ≥ 0, and the critical values (2.14)
uniformly dominate the online Bonferroni critical values (2.10) (the obtained critical values are
in particular nonnegative, thus defining a valid OMT procedure). The approach behind critical
values (2.14) is said here to be ’greedy’, because it spends the complete super-uniformity reward
ρT−1 obtained at step T − 1 for increasing the next critical value αT .

2.3.2 Smoothing out the super-uniformity reward

The greedy policy described in the previous section is not always appropriate when time is
considered on a potentially large period, because the sequence of critical values might fall too
abruptly. Instead, we can smooth this effect over time, by distributing the reward collected at
time T − 1 over all times following T . To formalize this idea, we introduce a SUR spending
sequence (see also Section 2.2.4), which is defined as a non-negative sequence γ′ = (γ′t)t≥1 such
that

∑
t≥1 γ

′
t ≤ 1. While this definition is mathematically the same as the definition of a spending

sequence, the role of the SUR spending sequence is different, so we use a different name for it.

Definition 2.3.1 For any spending sequence γ and any SUR spending sequence γ′, the online
Bonferroni procedure with super-uniformity reward, denoted by AρOB = {αρOB

t , t ≥ 1}, is defined
by the recursion

αρOB
T = αγT +

T−1∑
t=1

γ′T−tρt, T ≥ 1, (2.15)

where ρt = αρOB
t − Ft(αρOB

t ) denotes the super-uniformity reward at time t for that procedure.

Note that taking γ′ = (1, 0, . . . 0) recovers the ’greedy’ critical values (2.14). For the rectangular
kernel SUR spending sequence given by (2.9), we have

∑T−1
t=1 γ′T−tρt = h−1

∑T−1
t=1∨(T−h) ρt, which

we interpret as a uniform spending of the SUR reward over the last h time points. As shown in
Figure 2.3, the corresponding sequence of critical values (green line) is more ’stable’ than the one
using the greedy approach (blue line), allowing for some additional discoveries (on this simulated
data). The following result provides FWER control of the new rewarded critical values (2.15),
for a general SUR spending sequence.

Theorem 2.3.1 Consider the setting of Section 4.2, where a null bounding family F = {Ft, t ≥
1} satisfying (2.2) is at hand. For any spending sequence γ and any SUR spending sequence γ′,
consider the online Bonferroni procedure AOB = {αOB

t , t ≥ 1} (2.10), and the online Bonferroni
with super-uniformity rewards AρOB = {αρOB

t , t ≥ 1} (2.15). Then we have FWER(AρOB, P ) ≤ α
for all P ∈ P, while AρOB uniformly dominates AOB.

This result will be a consequence of a more general result, see Section 2.3.4.

2.3.3 Rewarded Adaptive Online Bonferroni

It is apparent from (2.11)-(2.12) that there is some looseness when upper-bounding
∑
t∈H0

γt
by
∑
t≥1 γt which may lead to unnecessarily conservative procedures. We may attempt to avoid
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Figure 2.3: Sequences of critical values for Bonferroni procedures with different rewards over
time 1 ≤ t ≤ T = 300 (simulated data): base Bonferroni critical values (2.10) (orange line),
rewarded with the greedy approach (2.14) (blue line), and with the rectangular kernel SUR
spending sequence (2.15) (h = 100, green line). The rug plots display the time of discoveries
for each procedure with the corresponding color. The Y -axis has been transformed by y 7→
− log(− log(y)). The grey dots denote the p-value sequence (those equal to 1 are displayed at
the top of the picture). The spending sequence is γt ∝ t−1.6.

this loss in efficiency by considering a spending sequence γ satisfying the condition
∑
t∈H0

γt ≤ 1
which is more liberal than

∑
t≥1 γt ≤ 1. In words, this means that the index t in the sequence

{γt, t ≥ 1} should only be incremented when we are testing an hypothesis Ht with t ∈ H0.
Since H0 is unknown, such a modification cannot be implemented directly in the γ sequence.
Nevertheless, an approach proposed by Tian and Ramdas (2021) works by replacing the unknown
set H0 by an estimate {1}∪{t ≥ 2 : pt−1 ≥ λ} for some parameter λ ∈ (0, 1), and to correct the
introduced error in the thresholds αt to maintain the FWER control. More formally, we follow
Tian and Ramdas (2021) by introducing the re-indexation functional T : {1, . . .} → {1, . . .}
defined by

T (T ) = 1 +

T∑
t=2

1{pt−1 ≥ λ}, T ≥ 1. (2.16)

Since a large p-value is more likely to be linked to a true null, T (T ) is used to account for the
number of true nulls before time T (note that this estimate is nevertheless biased). From an
intuitive point of view, T (T ) slows down the time by only incrementing time when the preceding
p-value is large enough. This idea leads to the adaptive online Bonferroni procedure introduced
by Tian and Ramdas (2021) (called there ’Adaptive spending’ 1), with spending sequence γ and
adaptivity parameter λ ∈ [0, 1), denoted here by AAOB = {αAOB

t , t ≥ 1}, and given by

αAOB
T = α(1− λ)γT (T ), T ≥ 1. (2.17)

1The so-called ’discarding’ part of the method proposed by Tian and Ramdas (2021) cannot be implemented
in our setting because the Ft are not convex, as discussed in Section 2.1.5.
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It recovers the standard online Bonferroni procedure when λ = 0 (because T (T ) = T for T ≥ 1 in
that case), but leads to different thresholds when λ > 0. Comparing AAOB to AOB, no procedure
uniformly dominates the other. An improvement of AAOB over AOB is expected to hold when
there are many false null hypotheses in the data, and increasingly so if the signal occurs early
in the time sequence, see the numerical experiments in Section 2.5.2. In addition, note that
the critical value αAOB

T depends on the data X1, . . . , XT−1 and thus is random. As a result,
the adaptive approach requires additional distributional assumptions compared with the online
Bonferroni procedure. In Tian and Ramdas (2021), AAOB is proved to control the FWER under
(2.1) and (2.3) (actually under the slightly more general condition (2.4) with Ft equal to identity).
Let us now use this approach in combination with the super-uniformity reward.

Definition 2.3.2 For any spending sequence γ, any SUR spending sequence γ′, and λ ∈ [0, 1),
the adaptive online Bonferroni procedure with super-uniformity reward, denoted by AρAOB =
{αρAOB

t , t ≥ 1}, is defined by

αρAOB
T = α(1− λ)γT (T ) +

∑
1≤t≤T−1
pt≥λ

γ′T−tρt + εT−1, T ≥ 1, (2.18)

where ρt = αρAOB
t − Ft(α

ρAOB
t ) denotes the super-uniformity reward a time t, and εT−1 =

1{pT−1 < λ}(αT−1 − α(1− λ)γT (T−1)) is an additional ’adaptive’ reward (convention ε0 = 0).

This class of procedures reduces to the class of procedures (2.15) introduced in the previous
section by setting λ = 0. However, when λ > 0 the class is different since the term α(1−λ)γT (T ),
which comes from αAOB

T , makes the threshold random. Also, the super-uniformity reward is only
collected at time t ≤ T − 1 where pt ≥ λ. The latter is well expected from the motivation of the
adaptive approach described above: when pt < λ, no testing is performed so no reward could be
obtained from ρt. Nevertheless, note that the additional term εT−1 allows to collect some reward
at time T − 1 in the case where pT−1 < λ. Since this term only appears in critical values of
adaptive procedures, we call it the ’adaptive’ reward. It is linked to the super-uniformity reward
in that no adaptive reward can be obtained if no super-uniformity reward has been collected
in the past. The following result shows that this approach is valid from the FWER control
perspective.

Theorem 2.3.2 Consider the setting of Section 4.2 where a null bounding family F = {Ft, t ≥
1} satisfying (2.2) is at hand. For any spending sequence γ, any SUR spending sequence γ′ and
λ ∈ [0, 1), consider the adaptive online Bonferroni procedure AAOB = {αAOB

t , t ≥ 1} (2.17) and
the adaptive online Bonferroni with super-uniformity rewards AρAOB = {αρAOB

t , t ≥ 1} (2.18).
Then, assuming that the model P is such that (2.3) holds, we have FWER(AρAOB, P ) ≤ α for
all P ∈ P, while AρAOB uniformly dominates AAOB.

Theorem 2.3.2 relies on a more general result (Theorem 2.3.3 below). Note that, contrary to
Theorem 2.3.1, Theorem 2.3.2 needs an independence assumption. This was already the case
without the super-uniformity reward since this is due to the adaptive methodology that makes
the critical values random. If this independence assumption holds, we show in Section 2.5.2
that AρAOB can indeed improve AρOB, while it always improves the procedure AAOB of Tian and
Ramdas (2021) (as guaranteed by the above theorem).

2.3.4 Rewarded version for base FWER controlling procedures
In this section we present a general result stating that any procedure ensuring online FWER
control (in a specific way) can be rewarded using super-uniformity while maintaining the FWER
control.
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Theorem 2.3.3 Assuming that (2.2) holds, consider any procedure A0 = (α0
t , t ≥ 1) satisfying

almost surely, for some λ ∈ [0, 1) and for all T ≥ 1,

α0
T +

∑
1≤t≤T−1,
pt≥λ

α0
t ≤ (1− λ)α. (2.19)

Then the following holds:

(i) A0 controls the online FWER, that is, FWER(A0, P ) ≤ α for all P ∈ P, either if the α0
T

are deterministic for all T ≥ 1, or if (2.3) holds;

(ii) for any SUR spending sequence γ′ = (γ′t, t ≥ 1), the procedure A = (αt, t ≥ 1), correspond-
ing to the rewarded A0, and defined by

αT = α0
T +

∑
1≤t≤T−1
pt≥λ

γ′T−t(αt − Ft(αt)) + 1{pT−1 < λ}(αT−1 − α0
T−1), T ≥ 1, (2.20)

controls the online FWER, that is, FWER(A, P ) ≤ α for all P ∈ P, either if the αT are
deterministic for all T ≥ 1, or if (2.3) holds.

Theorem 2.3.3 is proved in Section A.1.1. Condition (2.19) is essentially the same as Condi-
tion (20) derived in Tian and Ramdas (2021). It is satisfied by the online Bonferroni procedure
(A0 = AOB), and the online adaptive Bonferroni procedure (A0 = AAOB). While this is obvious
for AOB, the case of AAOB requires to carefully check how the functional T (·) (2.16) slows down
the time, which is done in Lemma A.1.3. Statement (i) of Theorem 2.3.3 thus proves the online
FWER control for these procedures. Statement (ii) of Theorem 2.3.3 is our main contribution
and reduces to Theorems 2.3.1 and 2.3.2, when choosing A0 = AOB and A0 = AAOB, respec-
tively. This recovers the rewarded procedures AρOB and AρAOB discussed in the previous sections:
compare (2.20) to (2.15) (with λ = 0), and (2.20) to (2.18). Nevertheless, other choices for A0

satisfying (2.19) are possible. According to our general result, any such choice is compatible with
our reward methodology.

2.4 Online mFDR control

In this section, we aim at finding procedures A such that mFDR(A, P ) ≤ α for some targeted
level α ∈ (0, 1). We follow the same route as for the FWER: we start with an application of
the super-uniformity reward to the classical LORD++ procedure (Ramdas et al., 2017, called
just LORD hereafter for short), and then turn to adaptive counterparts. Finally, we propose a
general result encompassing all these cases. In this section, we follow the notation of Ramdas
et al. (2017) for online mFDR control. For any procedure A = {αt, t ≥ 1} and realization of the
p-value process, let us denote

R(T ) =

T∑
t=1

1{pt(X) ≤ αt} (2.21)

the number of rejections of the procedure up to time T , and

τj = min{t ≥ 1 : R(t) ≥ j} (τj = +∞ if the set is empty), (2.22)

the first time that the procedure makes j rejections, for any j ≥ 1.
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2.4.1 Warming up: LORD procedure and a first greedy reward

While a sufficient condition for online FWER control is
∑
t≥1 αt ≤ α (see the previous section

and in particular (2.19)), the mFDR control is ensured when
∑
t≥1 αt ≤ α(1 ∨R(T )), as proved

in Theorem 2 of Ramdas et al. (2017) (applicable, e.g., under assumptions (2.2) and (2.3)).
Consequently, for each rejection we earn back wealth α with which we are allowed to increase
αt; typically by starting a new online Bonferroni critical value process. This idea is referred
to as α-investing in the literature, see Foster and Stine (2008); Aharoni and Rosset (2014);
Javanmard and Montanari (2018). This idea leads to the LORD (Levels based On Recent
Discovery) procedure (Javanmard and Montanari, 2018), with the improvement given by Ramdas
et al. (2017):

αLORD
T = W0γT + (α−W0)γT−τ1 + α

∑
j≥2

γT−τj , T ≥ 1, (2.23)

where by convention γt = 0 at any time t ≤ 0 and where γ is an arbitrary spending sequence.
Note that the test level at time T splits the initial α-wealth between the cases where R(T ) = 0
and R(T ) = 1, because the bound is equal to α(1 ∨ R(T )) = α in both cases so the first
rejection does not provide an extra room for false discoveries. The resulting additional parameter
W0 ∈ (0, α) balances the initial α-wealth between these two cases to maintain the mFDR control.
The procedure ALORD = {αLORD

t , t ≥ 1} controls the mFDR under (2.1) and (2.3), because∑
t≥1 α

LORD
t ≤ α(1∨R(T )) (see Section A.1.2 for a proof). Now, let us consider our more general

framework where we have at hand a null bounding family F = {Ft, t ≥ 1} satisfying (2.2). In
that case, we can prove that a sufficient condition on the critical values for mFDR control is
that, almost surely,

T∑
t=1

Ft(αt) ≤ αT +

T−1∑
t=1

Ft(αt) ≤ α(1 ∨R(T )),

see the general condition (2.30) below. This can be achieved by choosing

αT =

T∑
t=1

αLORD
t −

T−1∑
t=1

Ft(αt), T ≥ 1.

This leads to the thresholds

αT = αLORD
T + ρT−1, T ≥ 1, (2.24)

where ρT−1 = αT−1 − FT−1(αT−1) is the super-uniformity reward (2.8) at time T − 1 (with
the convention ρ0 = 0). Since ρt ≥ 0 for all t by (2.2), this procedure uniformly dominates the
procedure ALORD. Furthermore, depending on the magnitude of the super-uniformity reward,
this new procedure is potentially much more powerful.

2.4.2 Smoothing out the super-uniformity reward

As discussed for FWER control (see Section 2.3.2), the preliminary procedure (2.24) spends
immediately at time T all of the super-uniformity reward collected at time T − 1. However, it
is more advantageous to redistribute this reward over subsequent times T, T + 1, . . . , by using a
SUR spending sequence γ′ = (γ′t)t≥1. This gives rise to the following more general class of online
procedures.
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Figure 2.4: Sequences of critical values of LORD procedure with different rewards over time
1 ≤ t ≤ T = 300 (simulated data): base LORD critical values (B.13)(orange line), rewarded with
the greedy approach (2.24) (blue line), and with the rectangular kernel SUR spending sequence
(2.25) (h = 10, green line). The rug plots display the time of discoveries for each procedure with
the corresponding color. The y-axis has been transformed by y 7→ − log(− log(y)). The grey
dots denote the p-value sequence (those equal to 1 are displayed at the top of the picture). The
spending sequence is γt ∝ t−1.6.

Definition 2.4.1 For a spending sequence γ and a SUR spending sequence γ′, the LORD pro-
cedure with super-uniformity reward, denoted by AρLORD = {αρLORD

t , t ≥ 1}, is defined by the
recursion

αρLORD
T = αLORD

T +

T−1∑
t=1

γ′T−tρt T ≥ 1, (2.25)

where αLORD
T is given by (B.13) and ρt = αρLORD

t − Ft(α
ρLORD
t ) denotes the super-uniformity

reward at time t.

Figure 2.4 displays the critical values of the LORD procedure, and of those rewarded with the
greedy SUR spending sequence γ′ = (1, 0, . . . ) or rewarded with the rectangular kernel SUR
spending sequence (2.25) (h = 10). First, the reward given by the α-investing, which is possible
for mFDR control, is visible at each discovery for which all critical value curves ’jump’. Second,
the effect of the super-uniformity reward is visible between these jumps, and the kernel sequence
is able to better smooth the critical value sequence. As a result, the corresponding procedure is
likely to make more discoveries (as it is the case on the simulated data presented in Figure 2.4).
The following result establishes the mFDR control of this new class of rewarded procedures.

Theorem 2.4.1 Consider the setting of Section 4.2 where a null bounding family F = {Ft, t ≥
1} satisfying (2.2) is at hand. For any spending sequence γ and any SUR spending sequence
γ′, consider the LORD procedure ALORD = {αLORD

t , t ≥ 1} (B.13) and the LORD procedure with
super-uniformity rewards AρLORD = {αρLORD

t , t ≥ 1} (2.25). Then, assuming that the model P
is such that (2.3) holds, we have mFDR(AρLORD, P ) ≤ α for all P ∈ P while AρLORD uniformly
dominates ALORD.

This theorem is proved in Section A.1.2, as a corollary of a more general result (Theorem 2.4.3
below). As shown in the numerical experiments (Section 2.5.2), the improvement of AρLORD with
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respect to ALORD can be substantial.

Remark 2.4.1 AρLORD can be also expressed by using the paradigm of generalized α investing
(GAI) rules, as introduced in Foster and Stine (2008); Aharoni and Rosset (2014); Ramdas et al.
(2017), see Section A.3.3.

2.4.3 Rewarded Adaptive LORD
In this section, we apply the re-indexation trick of the γ sequence presented in Section 2.3.3 to
improve the performance of the procedures ALORD and AρLORD. For this, we follow essentially
the reasoning used by Ramdas et al. (2018) for deriving the SAFFRON procedure, with a slight
modification, as explained below. To start, let us define, for some parameter λ ∈ [0, 1),

Tj(T ) =

{
1 +

∑T
t=τj+2 1{pt−1 ≥ λ} if T ≥ τj + 1

0 if T ≤ τj
, j ≥ 1, (2.26)

with T0(T ) = T (T ) given by (2.16) by convention. From an intuitive point of view, Tj(T ) is
like a ’stopwatch’ starting after τj and suspended at each time t for which pt−1 < λ. Hence,
having pt < λ allows to delay the natural dissipation of α-wealth due to online testing. Then,
the SAFFRON procedure (Ramdas et al., 2018) is defined by the threshold

αT = min

λ, (1− λ)

W0γT0(T ) + (α−W0)γT1(T ) + α
∑
j≥2

γTj(T )

 . (2.27)

This procedure controls the mFDR under (2.1) and (2.3) as proved by Ramdas et al. (2018).
However, examining the proof in Ramdas et al. (2018), it turns out that the capping with λ is
not necessary. The capping prevents the critical values from exceeding λ, thus avoiding to get
pt ≥ λ when pt ≤ αt. However, to our knowledge, the latter does not play any role in the mFDR
control, and we work with the (uniformly dominating) procedure

αALORD
T = (1− λ)

W0γT0(T ) + (α−W0)γT1(T ) + α
∑
j≥2

γTj(T )

 . (2.28)

With the capping (2.27), an mFDR control is provided in Theorem 1 in Ramdas et al. (2018).
For our version (2.28), the mFDR control follows as a special case of Theorem 2.4.2 below with
Ft(u) = u for all t, u. Also note that AALORD reduces to ALORD (B.13) when λ = 0, because
Tj(T ) = 0 ∨ (T − τj) in that case. Now, we generalize this method to our present framework.

Definition 2.4.2 For a spending sequences γ, a SUR spending sequence γ′ and λ ∈ [0, 1), the
adaptive LORD procedure with super-uniformity reward denoted by AρALORD = {αρALORD

t , t ≥ 1},
is defined by

αρALORD
T = αALORD

T +
∑

1≤t≤T−1
pt≥λ

γ′T−tρt + εT−1, T ≥ 1, (2.29)

where αALORD
T is defined by (2.28), ρt = αρALORD

t − Ft(α
ρALORD
t ) denotes the super-uniformity

reward a time t and εT−1 = 1{pT−1 < λ}(αρALORD
T−1 − αALORD

T−1 ) is an additional ’adaptive’ reward
at time T − 1 (convention ε0 = 0).

Note that AρALORD reduces to AρLORD (2.25) when λ = 0, and to AALORD when Ft(u) = u for all
u, t. The following result shows that this class of procedures controls the mFDR.
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Theorem 2.4.2 Consider the setting of Section 4.2 where a null bounding family F = {Ft, t ≥
1} satisfying (2.2) is at hand. For any spending sequence γ and any SUR spending sequence γ′,
consider the adaptive LORD procedure AALORD = {αALORD

t , t ≥ 1} (2.28), and the adaptive LORD
procedure with super-uniformity rewards AρALORD = {αρALORD

t , t ≥ 1} (2.29). Then, assuming
that the model P is such that (2.3) holds, we have mFDR(AρALORD, P ) ≤ α for all P ∈ P while
AρALORD uniformly dominates AALORD and thus also the SAFFRON procedure of Ramdas et al.
(2018).

Theorem 2.4.2 follows from Theorem 2.4.3 below. Let us underline that AρALORD both incor-
porates α-investing and super-uniformity reward. Thus, it is expected to be the most powerful
among the procedures considered in the present paper. This is supported both by the numerical
experiments of Section 2.5.2 and the real data analysis in Section 2.5.3.

Remark 2.4.2 Note that the critical values of ALORD and ρ-ALORD can exceed 1 (e.g., when
all p-values are zero). Since the rejection decision is the same for a critical value larger than
1 or equal to 1, this may appear at first sight as wasted wealth. While this is indeed the case
for ALORD, we emphasize that this is not the case for ρ-ALORD, because the super-uniformity
reward allows to reuse the exceeding amount of wealth engaged in αρALORD

t ; namely ρt = αρALORD
t −

1 when αρALORD
t ≥ 1.

2.4.4 Rewarded version for base mFDR controlling procedures

The following result establishes that any base online mFDR controlling procedure (of a specific
type) can be rewarded with super-uniformity.

Theorem 2.4.3 Assuming that both (2.2) and (2.3) hold, consider any procedure A0 = (α0
t , t ≥

1) satisfying almost surely, for some λ ∈ [0, 1) and for all T ≥ 1,

α0
T +

∑
1≤t≤T−1,
pt≥λ

α0
t ≤ (1− λ)α (1 ∨R(T )), (2.30)

where R(T ) denotes the number of rejections up to time T for this procedure, see (2.21). Then
the following holds

(i) A0 controls the online mFDR, that is, mFDR(A0, P ) ≤ α for all P ∈ P;

(ii) for any SUR spending sequence γ′ = (γ′t, t ≥ 1), the procedure A = (αt, t ≥ 1), corre-
sponding to the rewarded A0, and defined by (2.20), controls the online mFDR, that is,
mFDR(A, P ) ≤ α for all P ∈ P.

Theorem 2.4.3 is proved in Section A.1.2. Condition (2.30) is essentially the same as the condition
found in Theorem 1 of Ramdas et al. (2018). Our main contribution is thus in statement (ii),
showing that the super-uniformity reward can be used with any base procedure A0 satisfying
(2.30). Since the latter condition holds for the LORD procedure A0 = ALORD, and the adaptive
LORD procedure A0 = AALORD (see Lemma A.1.3), Theorem 2.4.3 entails Theorem 2.4.1 and
Theorem 2.4.2, respectively. Finally, let us emphasize the similarity between Theorem 2.3.3
(FWER) and Theorem 2.4.3 (mFDR). Strikingly, the reward takes exactly the same form (2.20),
which makes the range of improvement comparable for these two criteria.
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2.5 SUR procedures for discrete tests

In this section, we study the performances of our newly derived SUR procedures in discrete online
multiple testing problems for simulated and real data. We defer some of the numerical results
to Appendix A.4.

2.5.1 Considered procedures

The considered procedures are the base (non-rewarded) procedures AOB (2.10), AAOB (2.17),
ALORD (B.13), and AALORD (2.28), and their rewarded counterparts AρOB (2.18), AρAOB (2.18),
AρLORD (2.29), and AρALORD (2.29), respectively. As mentioned in Section 2.1.5, we also consider
the ADDIS-spending and ADDIS procedures (see Tian and Ramdas, 2021, 2019) although the
type I error rate control is not guaranteed for these two procedures, in our (discrete) setting.
The parameters of the OMT procedures are set to α = 0.2, W0 = α/2 and λ = 0.5. For ADDIS
and ADDIS-spending, we use the default values W0 = αλτ

2 , with λ = 0.25 and τ = 0.5 (the
latter being the discarding parameter, see Tian and Ramdas, 2021, 2019). Following Tian and
Ramdas (2019), we set γt ∝ t−1.6 with a normalizing constant chosen such that

∑+∞
t=1 γt = 1.

For the SUR spending sequence (γ′t)t≥1 we use a rectangular kernel with bandwidth h, as defined
by (2.9), with h = 100 for FWER and h = 10 for mFDR. We discuss different choices for tuning
parameters in the SUR procedures (adaptivity parameter λ and the rectangular kernel bandwidth
h) in Appendices A.4.4 and A.4.5.

2.5.2 Application to simulated data

Simulation setting

We simulate m experiments in which the goal is to detect differences between two groups by
counting the number of successes/failures in each group. More specifically, we follow Gilbert
(2005), Heller and Gur (2011) and Döhler et al. (2018) by simulating a two-sample problem in
which a vector of m independent binary responses is observed for N subjects in both groups.
The goal is to test the m null hypotheses H0i: ’p1i = p2i’, i = 1, ...,m in an online fashion, where
p1i and p2i are the success probabilities for the ith binary response in group A and B respectively.
Thus, for each hypothesis i, the data can be summarized by a 2 × 2 contingency table, and we
use (two-sided) Fisher’s exact test for testing H0i. The m hypotheses are split in three groups of
size m1, m2, and m3 such that m = m1 +m2 +m3. Then, the binary responses are generated as
i.i.d Bernoulli of probability 0.01 (B(0.01)) at m1 positions for both groups, i.i.d B(0.10) at m2

positions for both groups, and i.i.d B(0.10) at m3 positions for one group and i.i.d B(p3) at m3

positions for the other group. Thus, the null hypotheses are true for m1 +m2 positions (set H0),
while the null hypotheses are false for m3 positions (set H1). Therefore, we interpret p3 as the
strength of the signal while πA = m3

m , corresponds to the proportion of signal. Also, m1 and m2

are both taken equal to m−m3

2 . In these experiments, we fix m = 500, and vary each one of the
parameters H1 (Section 2.5.2), πA (Section 2.5.2), N (Section A.4.1), p3 (Section A.4.2) while
keeping the others fixed. The default values are πA = 0.3, N = 25, p3 = 0.4 and H1 ⊂ {1, . . . ,m}
chosen randomly for each simulation run. We estimate the different criteria (FWER (2.5), mFDR
(2.6), power (2.7)) using empirical mean over 10 000 independent simulation trials.

Position of signal

We start by studying how the position of the signal can affect the performances of the procedures
(it is well-known to be critical, see Foster and Stine, 2008; Ramdas et al., 2017). We investigate
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different positioning schemes in which the signal can be clustered at the beginning of the stream,
or at the end, or clustered between the two, as described in the caption of Figure 2.5. Consistently

Figure 2.5: Power and type I error rates of the different considered OMT procedures versus
positions of the signal: at the beginning (B), the end (E), half at the beginning and half in the
middle of the stream (BM), half at the beginning and half at the end of the stream (BE), half in
the middle and half at the end of the stream (ME), and taken uniformly at random (Random).

with our theoretical results, Figure 2.5 shows that all procedures control the type I error rate
at level α = 0.2. In terms of power, we can see that the rewarded procedures have greater
power than the associated base procedures. More specifically, AρALORD uniformly dominates the
other procedures for mFDR control and AρAOB for FWER control. The gain in power is most
noticeable when the signal is not localized at the beginning of the stream (i.e. positions ME, E,
and Random) for which the online testing problem is more difficult. These first results indicate
that the rewarded procedures may protect against ’α-death’.

Proportion of signal

Figure 2.6 displays the results for πA varying in {0.1, . . . , 1}. It shows that the aforementioned
superiority of the rewarded procedures holds in this whole range. Also note that the SUR
reward can affect the monotonicity of the power curves: while most curves are increasing with
πA, the power of the rewarded procedure AρOB decreases. An explanation could be that when πA
increases, the marginal counts increase, and thus the degree of discreteness decreases providing a
smaller super-uniformity reward. However, using adaptivity seems to compensate for this effect,
thus providing better results.

Finally, let us mention that the additional numerical results in Section A.4 provide qualita-
tively similar conclusions for all other explored parameter configurations: the SUR procedures
AρAOB and AρALORD always improve, often substantially, the existing OMT procedures.
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Figure 2.6: Power and type I error rates of the considered procedures for πA ∈
{0.1, 0.2, . . . , 0.9, 1}.

Table 2.3: Number of discoveries for FWER controlling OMT procedures (left) and mFDR
controlling OMT procedures (right). These numbers are obtained by running the procedures on
the first 30 000 genes for male (second row) and female (third row) mice in the IMPC data.

Procedures OB ρOB AOB ρAOB LORD ρLORD ALORD ρALORD
# discoveries (male) 229 377 281 697 882 972 972 1041

# discoveries (female) 267 481 764 811 839 946 966 1046

2.5.3 Application to IMPC data

In this section we analyse data from the International Mouse Phenotyping Consortium (IMPC),
which coordinates studies on the genotype influence on mouse phenotype. More precisely, scien-
tists test the hypotheses that the knock-out of certain genes will not change certain phenotypic
traits (e.g., the coat or eye color). Since the data set is constantly evolving as new genes are
studied for new phenotypic traits of interest, online multiple testing is a natural approach for
analysing such data, see also Tian and Ramdas (2021); Xu and Ramdas (2021). We use the data
set provided by Karp et al. (2017) which includes, for each studied gene, the count of normal
and abnormal phenotype for female and male mice (separately), thus providing two by two con-
tingency tables, which can be analysed using Fisher exact tests. In this section, we investigate
the genotype effect on the phenotype separately for male and female. The data set originally
contains nearly 270 000 genes studies, but we focus on the first 30 000 genes for simplicity. We
set the global level α to 0.2 and 0.05, respectively for FWER and mFDR procedures. For the
procedure parameters, we follow the choice made in Section 2.5.1. Table 2.3 presents the number
of discoveries for the FWER controlling procedures OB, AOB, ρOB, ρAOB (left) and for the
mFDR controlling procedures LORD, ALORD, ρLORD, ρALORD (right). The results show that
ignoring the discreteness of the tests causes the scientist to miss (potentially many) discoveries.
Hence, using the SUR methods helps to reduce this risk.
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Figure 2.7 (FWER procedures) and Figure 2.8 (mFDR procedures) illustrate in more detail
how the super-uniformity reward leads to more discoveries, in the case of male mice (similar find-
ings hold for the female mice for which the corresponding figures can be found in Section A.5.2).
First, note that the smallest p-values occur at the beginning of the stream (see Figure A.9 in
Section A.5.1), so that we limit the visual analysis to the first 1500 p-values for clarity of ex-
position. For the ρOB procedure, the benefit of incorporating the super-uniformity reward is
visible in the left panel of Figure 2.7. As expected from Figure 2.3, applying a rectangular kernel
to these rewards yields a smooth curve. For the ρAOB procedure, presented in the right panel
of Figure 2.7, the improvement is even stronger, but the resulting critical value curve is less
smooth. This is due to the ’adaptive’ reward, that is, the εT−1-component of our improvement,
recall (2.18). More precisely, an explanation of this ’saw-tooth’ shape is that during a period
with p-values smaller than λ, we have αρAOB

T −αAOB
T ≥ αρAOB

T−1 −αAOB
T−1 so the gain increases. Also,

if this period lasts for a while (as for 500 . t . 1240 here), the ρ-part of the reward vanishes
and we end up with a constant gain αρAOB

T − αAOB
T ≈ αρAOB

T−1 − αAOB
T−1, explaining the flat part of

the curve, until the next pT ≥ λ occurs. After this point, we switch from the ε-regime back to
the ρ-regime, i.e., αρAOB

T+1 = αAOB
T+1 + γ′1ρT . Since typically γ′1ρT � αρAOB

T−1 − αAOB
T−1, this causes the

downward jump in the green curve. For the mFDR procedures presented in Figure 2.8, there is
an additional ’rejection’ reward as described in Section 2.4. Note that this makes some critical
values exceed 1 (both for ALORD and ρALORD), which thus cannot be displayed in the Y -axis
scale considered in that figure. However, these values are still used in ρALORD algorithm to
compute the future critical values (see Remark 2.4.2). The obtained results are qualitatively
similar to the FWER setting: our proposed reward makes the green curves run above the orange
ones, uniformly over the considered time, hence inducing significantly more discoveries.

Figure 2.7: Applying online FWER controlling procedures to the male mice IMPC data set. Left
panel: p-values and critical values for OB (orange curve) and ρOB (green curve). Right panel:
AOB (orange curve) and ρAOB (green curve). Representation similar to Figure 2.3 (Y -axis
transformed by y 7→ − log(− log(y)); p-values equal to 1 displayed at the top of the picture).

2.6 SUR procedures for weighted p-values

In this section, we show how our SUR approach can be easily used to construct valid online
p-value weighting procedures.
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Figure 2.8: Applying online mFDR controlling procedures to the male mice IMPC data set. Left
panel: p-values and critical values for LORD (orange curve) and ρLORD (green curve). Right
panel: ALORD (orange curve) and ρALORD (green curve). Representation similar to Figure 2.4
(Y -axis transformed by y 7→ − log(− log(y)); p-values equal to 1 are displayed at the top of the
picture).

2.6.1 Setting and benchmark procedure

Consider a standard continuous online multiple testing setting where each p-value is super-
uniformly distributed under the null, that is, (2.1) holds. Assume in addition that, at each
time t, the p-value pt is associated with a quantity rt ≥ 0, called the raw weight (as opposed
to the rescaled weight defined further on), which is assumed to be measurable w.r.t. Ft−1. The
magnitude of rt is interpreted as the level of belief in a potential true discovery at time t: a large
weight indicates a strong belief that the corresponding null hypothesis is false. Throughout the
section, the weights rt are assumed to be available a priori and we will not discuss how to derive
them (for this task, we refer to Wasserman and Roeder (2006); Rubin et al. (2006); Roeder and
Wasserman (2009); Hu et al. (2010); Zhao and Zhang (2014); Ignatiadis et al. (2016); Chen and
Kasiviswanathan (2020) among others).

While p-value weighting is a classical tool for improving the performance of multiple testing
methods in the offline setting (see references in Section 2.1.3), the incorporation of weights has
received little attention in the online case. The only relevant work to our knowledge is Ram-
das et al. (2017) (Section 5 therein), which presents sufficient criteria for weighting procedures
controlling the (m)FDR based on so-called GAI++ procedures and also discusses the technical
challenges associated with weighted online multiple testing. An explicit algorithm which satisfies
these criteria is used in Ramdas et al. (2017)2, which is detailed in Appendix A.3.2 for complete-
ness. This method, which will be our benchmark procedure, works by weighting the p-values
and adjusting for this weighting in the rejection reward.

2.6.2 New weighting approach

The main idea of our new approach is as follows: consider weighted p-values p̃t = pt/wt for some
rescaled weight wt ∈ [0, 1] which gives rise to the null bounding family F = {Ft : u ∈ [0, 1] 7→
uwt, t ≥ 1}. Since the weights are constrained to take their values in [0, 1], the functions of F
are super-uniform, that is, (2.2) holds. Hence, one can apply our SUR approach with respect to
that family F .

2An implementation of this procedure can be found on the website https://github.com/fanny-yang/
OnlineFDRCode

https://github.com/fanny-yang/OnlineFDRCode
https://github.com/fanny-yang/OnlineFDRCode
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Table 2.4: Number of discoveries for weighted controlling OMT procedures for the ’airway’ data
set , with the weights taken from Ignatiadis et al. (2016).

Procedures OB wOB (new) AOB wAOB (new) LORD wGAI1 wGAI2 wLORD (new)
# discoveries 1092 1195 1188 1273 3550 1308 3631 4445

More specifically, our approach takes into account the null bounding family F in a simple
two-step process, which proceeds as follows: for each time t,

1. enforce super-uniformity by computing the rescaled weight wt = ξt(rt|r1, . . . , rt−1), t ≥ 1,
for some given rescaling function ξt valued in [0, 1] (see below for more details and an
explicit choice);

2. apply any one of the SUR methods from Section 2.3 or Section 2.4, depending on whether
FWER or mFDR control is desired.

We denote these new procedures by wX, where X stands for the name of the base procedure
(either OB (2.10), AOB (2.17), LORD (B.13) or ALORD (2.28)). These procedures all come
with the corresponding FWER or mFDR control (by additionally assuming (2.3) if needed). In
particular, to the best of our knowledge, this also provides the first method for weighted online
FWER control.

At first sight, these SUR weighting approaches may seem to be ineffective due to the con-
servatism induced by the rescaling step. However, this is countered in the second step by using
SUR procedures that provide larger values αt, due to the super-uniform rewards accumulated in
the past. The hope is that these two effects balance out in such a way as to favor rejection of
hypotheses associated with larger values of (raw) weights.

Finally, let us mention that a simple choice for ξt is given by ξt(x|r1, . . . , rt−1) = F̂t−1(x)1{x > 0},
where F̂t−1(x) = (t− 1)−1

∑t−1
i=1 1{ri ≤ x} is the empirical c.d.f. of the sample r1, . . . , rt−1 (and

by convention F̂0(x) = 1). This particular choice is easy to compute in a sequential manner, and
it satisfies the following intuitive and desirable properties: ξt(x) ∈ [0, 1] (ensures super-uniformity
of F), ξt(x) is nondecreasing in x (a larger raw weight leads to a larger rescaled weight), ξt(0) = 0
(raw zero weights rescaled to zero), ξt(λrt|λr1, . . . , λrt−1) = ξt(rt|r1, . . . , rt−1) for all λ > 0 (scale
invariance) and if all raw weights are equal then all rescaled weights are equal to 1.

2.6.3 Analysis of RNA-Seq data

We revisit an analysis of the RNA-Seq data set ‘airway’ using results from the Independent
Hypothesis Weighting (IHW) approach (for details, see Ignatiadis et al. (2016) and the vignette
accompanying its software implementation). While the original data was not collected in an
online fashion, we use it here nevertheless to provide a proof of concept for weighted SUR
procedures. The ‘airway’ data set contains data from 64102 genes and the corresponding (offline)
weights are taken from the output of the ihw function from the bioconductor package ‘IHW’.
These ‘raw’ weights are then transformed into rescaled weights by using the function ξt described
in the previous section. For the procedure parameters, we use the same choices as for the analysis
of the IMPC data, see Section 2.5.3.

Table 2.4 (left part) presents the result for the FWER controlling procedures OB, AOB
(non-weighted), and wOB, wAOB (SUR weighted approaches). It is clear that incorporating
the weights leads to more rejections, which corroborates the fact that the weights coming from
Ignatiadis et al. (2016) are indeed informative.
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As for mFDR control, the (non-weighted) LORD is compared to our weighted version wLORD
in Table 2.4 (right part). As additional competitors, we also added the weighted GAI++ pro-
cedure proposed in Ramdas et al. (2017) (see Section A.3.2 for a detailed description), that we
use either with the raw weights (denoted by wGAI1) or with the rescaled weights (denoted by
wGAI2). As one can see, the effect of rescaling the weights is highly beneficial, and the new
wLORD proposal is the one that incorporates these weights in the most efficient way.

2.7 Discussion

2.7.1 Conclusion

Existing OMT procedures often suffer from a lack of power due to conservativeness of the p-
values. This occurs typically for discrete test statistics, which is a common situation in data sets
where testing is based upon counts. To fill the gap, we introduced new SUR versions of some
existing classical procedures, that ’reward’ the base procedures by spending more efficiently the
α-wealth according to known bounds on the null cumulative distribution functions. We showed
that our new SUR procedures provide rigorous control of online error criteria (FWER or mFDR)
under classical assumptions while offering a systematic power enhancement. When using discrete
Fisher exact test statistics, the improvement is substantial, both for simulated and real data.

In addition, even in the standard case of uniformly distributed p-values, our approach al-
lowed us to derive new weighted procedures that incorporate external covariates. This provides
improvements w.r.t. existing online weighting strategies.

2.7.2 Another viewpoint

In the discrete setting, let us consider the following constrained spending problem: at each step
t, choose the critical value αt to be in the support St (including 0) so that the following contraint
holds ∑

t≥1

αt ≤ α. (2.31)

It solves the super-uniformity problem, because Ft(αt) = αt for all t, while it controls the online
FWER. This general principle, that we refer to as ’constrained spending strategies’, can be
implemented in many ways.

Markedly, the SUR approach is a way to achieve this, by additionally following some reference
critical values — here the online Bonferroni critical values αOB

t (2.10). Indeed, the rejection
decision pt ≤ αρOB

t and pt ≤ αt = Ft(α
ρOB
t ) are almost surely identical and we have calibrated

αρOB
t such that (2.31) holds, see (2.13). In other words, even if our critical values are not

constrained to be in the support initially, the effective critical values αt = Ft(α
ρOB
t ) that are

actually used in the decision rule will automatically belong to the support. Thus, our approach
can be equivalently seen as a way of implementing the constrained spending strategies delineated
above.

Obviously, there are other ways to implement the constrained spending strategy. One instance
is the delayed spending (DS) approach, that we describe in detail in Appendix A.2.

2.7.3 Future directions

While our results address several issues, they also raise new questions. First, the bandwidth
of the kernel-based SUR spending sequence γ′ given by (2.9) has been chosen in a loose way
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here, but tuning the bandwidth is certainly interesting from a power enhancement perspective
(see Section A.4.5). Also, in applications, the user would possibly like to select the bandwidth
in a data dependent fashion without losing control over type I error rate. These two issues are
interesting extensions for future developments. Second, while our work focuses on marginal FDR,
it would be desirable to build rewarded OMT procedures that control the (non-marginal) FDR.
However, usual proofs rely on a monotonicity property of the critical value sequence (Ramdas
et al., 2017) that is difficult to satisfy here, because the super-uniformity reward naturally varies
over time. Hence, deriving rewarded FDR controlling procedures is a challenging issue that is
left for future investigations. Third, most of our results rely on an independence assumption, see
(2.3). While this can be considered as a mild restriction in an online framework, relaxing it or
incorporating a known dependence structure in OMT is an interesting avenue.
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We provide new false discovery proportion (FDP) confidence envelopes in several multiple testing
settings relevant for modern high dimensional-data methods. We revisit the scenarios considered
in the recent work of Katsevich and Ramdas (2020) (top-k, preordered — including knockoffs —,
online) with a particular emphasis on obtaining FDP bounds that have both non-asymptotical
coverage and asymptotical consistency, i.e. converge below the desired level α when applied to
a classical α-level false discovery rate (FDR) controlling procedure. This way, we derive new
bounds that provide improvements over existing ones, both theoretically and practically, and
are suitable for situations where at least a moderate number of rejections is expected These
improvements are illustrated with numerical experiments and real data examples. In particular,
the improvement is significant in the knockoffs setting, which shows the impact of the method
for a practical use. As side results, we introduce a new confidence envelope for the empirical
cumulative distribution function of i.i.d. uniform variables and we provide new power results in
sparse cases, both being of independent interest.

3.1 Introduction

3.1.1 Background

Multiple inference is a crucial issue in many modern, high dimensional, and massive data sets,
for which a large number of variables are considered and many questions naturally emerge, either
simultaneously or sequentially. Recent statistical inference has thus turned to designing methods
that guard against false discoveries and selection effect, see Cui et al. (2021); Robertson et al.
(2022) for recent reviews on that topic. A key quantity is typically the false discovery proportion
(FDP), that is, the proportion of false discoveries within the selection (Benjamini and Hochberg,
1995).

Among classical methods, finding confidence bounds on the FDP that are valid after a user
data-driven selection ( ‘post hoc’ FDP bounds), has retained attention since the seminal works
of Genovese and Wasserman (2004, 2006); Goeman and Solari (2011). The strategy followed
by these works is to build confidence bounds valid uniformly over all selection subsets, which
de facto provides a bound valid for any data-driven selection subset. A number of such FDP
bounds have been proposed since, either based on a ‘closed testing’ paradigm (Hemerik et al.,
2019; Goeman et al., 2019, 2021; Vesely et al., 2021), a ‘reference family’ (Blanchard et al., 2020;
Durand et al., 2020), or a specific prior distribution in a Bayesian framework (Perrot-Dockès
et al., 2021). It should also be noted that methods providing bounds valid uniformly over some
particular selection subsets can also be used to provide bounds valid on any subsets by using
an ‘interpolation’ technique, see, e.g., Blanchard et al. (2020). This is the case for instance for
bounds based upon an empirical distribution function confidence band, as investigated by Mein-
shausen and Bühlmann (2005); Meinshausen (2006); Meinshausen and Rice (2006); Dümbgen
and Wellner (2023). Loosely, we will refer to such (potentially partial) FDP bounds as FDP
confidence envelopes in the sequel.

Recently, finding FDP confidence envelopes has been extended to different contexts of interest
in Katsevich and Ramdas (2020) (KR below for short), including knockoffs (Barber and Candès,
2015; Candès et al., 2018) and online multiple testing (Aharoni and Rosset, 2014). For this, their
bounds are tailored on particular nested ‘paths’, and employ accurate martingale techniques.
In addition, Li et al. (2022) have recently investigated specifically the case of the knockoffs
setting by using a ‘joint’ k-FWER error rate control (see also Genovese and Wasserman, 2006;
Meinshausen, 2006; Blanchard et al., 2020), possibly in combination with closed testing.
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3.1.2 New insight: consistency
The main point of this paper is to look at FDP confidence envelopes towards the angle of a
particular property that we call consistency. First recall that the false discovery rate (FDR) is
the expectation of the FDP, which is a type I error rate measure with increasing popularity since
the seminal work of Benjamini and Hochberg (1995). Informally, an FDP confidence envelope
is consistent, if its particular value on an FDR-controlling selection set is close to (or below)
the corresponding nominal value, at least asymptotically. This property is important for several
reasons:

• FDR controlling procedures are particular selection sets that are widely used in practice.
Hence, it is very useful to provide an accurate FDP bound for these particular rejection sets.
This is the case for instance for the commonly used Benjamini-Hochberg (BH) procedure
at a level α — or even for a data dependent choice of the level α̂ — for which the FDP
bound should be close to α (or α̂), at least in ‘favorable’ cases;

• a zoo of FDP confidence envelopes have been proposed in previous literature, and we see
the consistency as a principled way to discard some of them while putting the emphasis on
others;

• searching for consistency can also lead to new bounds that are accurate for a moderate
sample size.

It turns out that most of the existing bounds, while being accurate in certain regimes, are not
consistent. In particular, this is the case for those of Katsevich and Ramdas (2020), because of a
constant factor (larger than 1) in front of the FDP estimate. The present paper proposes to fill
this gap by proposing new envelopes that are consistent. In a nutshell, we replace the constant
in front of the FDP estimate by a function that tends to 1 in a particular asymptotical regime.

Since we evoke consistency, it is worth emphasizing that the envelopes developed in this work
have coverage holding in a non-asymptotical sense. Here, consistency means that on top of this
strong non-asymptotical guarantee, the bound satisfies an additional sharpness condition in an
asymptotical sense and for some scenarios of interest, including sparse ones.

3.1.3 Settings
Following Katsevich and Ramdas (2020), we consider the three following multiple testing settings
for which a ‘path’ means a (possibly random) nested sequence of candidate rejection sets:

• Top-k: the classical multiple testing setting where the user tests a finite number m of null
hypotheses and observes simultaneously a family of corresponding p-values. This is the
framework of the seminal paper of Benjamini and Hochberg (1995) and of the majority of
the follow-up papers. In that case, the path is composed of the hypotheses corresponding
to the top-k most significant p-values (i.e. ranked in increasing order), for varying k.

• Pre-ordered: we observe p-values for a finite set of cardinal m of null hypotheses, which
are a priori arranged according to some ordering. In that setting, the signal (if any) is
primarily carried by the ordering: alternatives are expected to be more likely to have a
small rank. Correspondingly the path in that case is obtained by p-value thresholding
(for fixed threshold) of the first k hypotheses w.r.t. that order, for varying k. A typical
instance is the knockoffs setting (Barber and Candès, 2015; Candès et al., 2018), where
the null hypotheses come from a high-dimensional linear regression model and one wants
to test whether each of the m variables is associated with the response. The ordering is
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data-dependent and comes from an ancillary statistic independent of the tests themselves,
so that one can argue conditionally and consider the ordering (and path) as fixed.

• Online: the null hypotheses come sequentially, and there is a corresponding potentially
infinite stream of p-values. An irrevocable decision (reject or not) has to be taken in turn
for each new hypothesis, depending on past observations only. The path is naturally defined
according to the set of rejections until time t, for varying t.

Let us introduce notation that encompasses the three settings mentioned above: the set of
hypotheses is denoted by H (potentially infinite), the set of null hypotheses H0 is an unknown
subset of H, and a path Π = (Rk, k ≥ 1) (with convention R0 = ∅) is an ordered sequence of
nested subsets of H that depends only on the observations. A confidence envelope is a sequence
(FDPk, k ≥ 1) (with convention FDP0 = 0) of random variables valued in [0, 1], depending only
on the observations, such that, for some pre-specified level δ, we have

P(∀k ≥ 1,FDP(Rk) ≤ FDPk) ≥ 1− δ, (3.1)

where FDP(Rk) = |Rk∩H0|
|Rk|∨1 is the FDP of the set Rk. In (3.1), the guarantee is uniform in k,

which means that it corresponds to confidence bounds valid uniformly over the subsets of the
path. Also, distribution P is relative to the p-value model, which will be specified further on and
depends on the considered framework.

Remark 3.1.1 (Interpolation) On can notice here that any FDP confidence envelope of the
type (3.1) can also lead to a post hoc FDP bound valid uniformly for all R ⊂ H: specifically, by
using the interpolation method (see, e.g., Blanchard et al., 2020; Goeman et al., 2021; Li et al.,
2022), if (3.1) holds then the relation also holds with the sharper bound (F̃DPk, k ≥ 1) given by

F̃DPk =
mink′≤k{|Rk ∩ (Rk′)

c|+ |Rk′ |FDPk′}
|Rk| ∨ 1

, (3.2)

due to the fact that the number of false positives in Rk is always bounded by the number of false
positives in Rk′ ⊂ Rk plus the number of elements of Rk ∩ (Rk′)

c.

Particular subsets of Π = (Rk, k ≥ 1) that are of interest are those controlling the FDR. Given
a nominal level α, a ‘reference’ procedure chooses a data-dependent k̂α such that E

[
FDP(Rk̂α)

]
≤

α. Depending on the setting, we consider different reference procedures:

• Top-k setting: the reference FDR controlling procedure is the Benjamini-Hochberg (BH)
step-up procedure, see Benjamini and Hochberg (1995);

• Pre-ordered setting: the reference procedure is the Lei-Fithian (LF) adaptive Selective
sequential step-up procedure, see Lei and Fithian (2016) (itself being a generalization of
the procedure of Li and Barber, 2017);

• Online setting: the reference procedure is the (LORD) procedure, see Javanmard and
Montanari (2018) and more precisely the improved version of Ramdas et al. (2017).

As announced, for all these procedures, the expectation of the FDP (that is, the FDR) is guaran-
teed to be below α. On the other hand, it is commonly the case that in an appropriate asymptotic
setting, the FDP concentrates around its expectation, see, e.g., Genovese and Wasserman (2004);
Neuvial (2008, 2013). Therefore, an adequate confidence bound on the FDP should asymptoti-
cally converge to (or below) α when applied to a reference procedure. Furthermore, we emphasize
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once more that we aim at a bound which is valid non-asymptotically, and uniformly over the
choice of α (or equivalently k) to account for possible ‘data snooping’ from the user (that is,
α = α̂ is possibly depending on the data).

Let us now make the definition of consistency more precise.

Definition 3.1.1 (Consistency for top-k and pre-ordered settings) Let δ ∈ (0, 1) be fixed.
For each m ≥ 1, let P(m) be a multiple testing model over the hypotheses set H = {1, . . . ,m},
Π = (Rk, k ≥ 1) be a possibly random path of nested subsets of H, and (FDPk, k ≥ 1) a confidence
envelope at level 1 − δ over that path, i.e. satisfying (3.1) (for P = P(m)). For any α ∈ (0, 1),
let k̂α be an FDR controlling procedure at level α, i.e. satisfying E(m)

[
FDP(Rk̂α)

]
≤ α. Then

the confidence envelope is said to be consistent for the sequence (P(m),m ≥ 1) and for the FDR
controlling procedure Rk̂α ∈ Π at a level α in a range [α0, 1) ⊂ (0, 1), if for all ε > 0,

lim
m→∞

P(m)

(
sup

α∈[α0,1)

{
FDPk̂α − α

}
≥ ε

)
= 0. (3.3)

In the above definition, P(m) stands for a multiple testing model with m hypotheses that is to
be specified. We will be interested in standard model sequences that represent relevant practical
situations, in particular sparse cases where a vanishing proportion of null hypotheses are false
when m tends to infinity. This definition applies for the two first considered settings (top-k and
pre-ordered). Note that due to (3.1), we have

P(∀α ∈ (0, 1),FDP(Rk̂α) ≤ FDPk̂α) ≥ 1− δ. (3.4)

Hence, (3.3) comes as an additional asymptotical accuracy guarantee to the non-asymptotical
coverage property (3.4). Moreover, the uniformity in α in (3.4)-(3.3) allows for choosing α in a
post hoc manner, while maintaining the false discovery control and without paying too much in
accuracy, that is, for any data-dependent choice of α̂, FDP(Rk̂α̂) ≤ FDPk̂α̂ with probability at
least 1− δ, with FDPk̂α̂ . α̂(1 + o(1)) in ‘good’ cases.

In the third setting, an online FDR controlling procedure provides in itself a sequence (Rk, k ≥
1) and not a single set Rk̂α . As a consequence, a confidence envelope (FDPk, k ≥ 1) is defined
specifically for each procedure (Rk, k ≥ 1). Hence, the definition should be slightly adapted:

Definition 3.1.2 (Consistency for online setting) Let δ ∈ (0, 1) be fixed and P be an online
multiple testing model over the infinite hypothesis set H = {1, 2, . . .}. Let (Rk, k ≥ 1) be an
(online) FDR controlling procedure at level α, i.e. such that supk≥1 E [FDP(Rk)] ≤ α, and
(FDPk, k ≥ 1) be a corresponding confidence envelope at level 1− δ, i.e., satisfying (3.1). Then
(FDPk, k ≥ 1) is said to be consistent for the model P if for all ε > 0,

lim
k→∞

P
(
FDPk − α ≥ ε

)
= 0. (3.5)

Note that both in (3.1) and (3.5) no uniformity w.r.t. the level α is imposed in the online
setting.

3.1.4 Contributions
Our findings are as follows:

• In each of the considered settings (top-k, pre-ordered, online), we provide new (non-
asymptotical) FDP confidence envelopes that are consistent under some mild conditions, in-
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cluding sparse configurations, see Proposition 3.2.2 (top-k), Proposition 3.3.1 (pre-ordered)
and Proposition 3.4.1 (online). Table 3.1 provides a summary of the considered procedures
in the different contexts, including the existing and new ones. It is worth noting that in
the top-k setting, the envelope based on the DKW inequality (Massart, 1990) is consistent
under moderate sparsity assumptions only, while the new envelope based on the Wellner
inequality (Shorack and Wellner, 2009) covers all the sparsity range (Proposition 3.2.2).

• As a byproduct, our results provide (non-asymptotical) confidence bounds on the FDP for
standard FDR-controlling procedures which are asymptotically sharp (consistency) and for
which a data-driven choice of the level α is allowed. In particular, in the top-k setting,
this gives a new sharp confidence bound for the achieved FDP of the BH procedure while
tuning the level from the same data, see (3.18) below.

• In the top-k setting, we also develop adaptive envelopes, for which the proportion of null
hypotheses is simultaneously estimated, see Section 3.2.5. This is a novel approach with
respect to existing literature and it is shown to improve significantly the bounds on simu-
lations in ‘dense’ situations, see Section 3.5.

• In the pre-ordered setting, including the ‘knockoff’ case, we introduce new envelopes, called
‘Freedman’ and ‘KR-U’, which are the two first (provably-)consistent confidence bounds
in that context to our knowledge. This is an important contribution since the knockoff
method is one of the leading methodology in the literature of the last decade. In addition,
KR-U is shown to behave suitably, even for moderate sample size, see Section 3.5.

• Our study is based on dedicated tools of independent interest, based on uniform versions of
classical deviation inequalities, see Corollary 3.2.1 (Wellner’s inequality), Corollary B.3.2
(Freedman’s inequality). Both can be seen as a form of ‘stitching’ together elementary
inequalities, see Howard et al. (2021) for recent developments of this principle. The bounds
developed here are presented in a self-contained manner.

Simes DKW KR Wellner (new) Freedman (new) KR-U (new)
Top-k No Yes No Yes

Pre-ordered No Yes Yes
Online No Yes Yes

Table 3.1: Consistency property (Yes or No) for different envelopes, depending on the consid-
ered contexts. ‘Consistent’ means consistent at least in a particular (reasonable) configuration.
Unfilled means undefined in that context.

3.2 Results in the top-k case

3.2.1 Top-k setting
We consider the classical multiple setting where we observe m independent p-values p1, . . . , pm,
testingm null hypothesesH1, . . . ,Hm. The set of true nulls is denoted byH0, which is of cardinal
m0 and we denote π0 = m0/m ∈ (0, 1). We assume that the p-values are uniformly distributed
under the null, that is, for all i ∈ H0, pi ∼ U(0, 1).

We consider here the task of building a (1− δ)-confidence envelope (3.1) for the top-k path

Rk = {1 ≤ i ≤ m : pi ≤ p(k)}, k = 1, . . . ,m. (3.6)
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A rejection set of particular interest is the BH rejection set, given by Rk̂α where

k̂α = max
{
k ∈ N : F̂DPk ≤ α

}
, F̂DPk = mpk/k, (3.7)

(with the convention R0 = ∅).

3.2.2 Existing envelopes

Let us first review the prominent confidence envelopes that have been considered in the literature.
Let U1, . . . , Un be n ≥ 1 i.i.d. uniform random variables. For δ ∈ (0, 1), each of the following
(uniform) inequalities holds with probability at least 1− δ:

• Simes (or Robbins, 1954): for all t ∈ (0, 1), n−1
∑n
i=1 1{Ui ≤ t} ≤ t/δ.

• DKW (Massart, 1990): for all t ∈ (0, 1), n−1
∑n
i=1 1{Ui ≤ t} ≤ t+

√
log(1/δ)/2 n−1/2.

• KR (Katsevich and Ramdas, 2020) (for δ ≤ 0.31), for all t ∈ (0, 1), n−1
∑n
i=1 1{Ui ≤ t} ≤

log(1/δ)
log(1+log(1/δ)) (1/n+ t).

Taking (U1, . . . , Un) = (pi, i ∈ H0), n = m0, and t = p(k) in the bounds above gives the
following confidence envelopes (in the sense of (3.1)) for the top-k path: for k ∈ {1, . . . ,m},

FDP
Simes

k = 1 ∧
mp(k)

kδ
; (3.8)

FDP
DKW

k = 1 ∧

(
mp(k)

k
+
m1/2

√
0.5 log 1/δ

k

)
; (3.9)

FDP
KR

k = 1 ∧
(

log(1/δ)

log(1 + log(1/δ))

(mp(k)

k
+ 1/k

))
, (3.10)

the last inequality requiring in addition δ ≤ 0.31. Please note that we can slightly improve these
bounds by taking appropriate integer parts, but we will ignore this detail further on for the sake
of simplicity.

3.2.3 New envelope

In addition to the above envelopes, this section presents a new one deduced from a new ‘uniform’
variation of Wellner’s inequality (recalled in Lemma B.4.2). Let us first define the function

h(λ) = λ(log λ− 1) + 1, λ > 1. (3.11)

Lemma B.4.1 gathers some properties of h, including explicit accurate bounds for h and h−1.

Proposition 3.2.1 (Uniform version of Wellner’s inequality) Let U1, . . . , Un be n ≥ 1 i.i.d.
uniform random variables and κ = π2/6. For all δ ∈ (0, 1), we have with probability at least 1−δ,

∀t ∈ (0, 1), n−1
n∑
i=1

1{Ui ≤ t} ≤ t h−1

(
log(κ/δ) + 2 log (dlog2(1/t)e)

ng(t)

)
, (3.12)
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for g(t) = 2−dlog2(1/t)e/(1 − 2−dlog2(1/t)e) ≥ t/2 and h(·) defined by (3.11). In particular, with
probability at least 1− δ,

∀t ∈ (0, 1), n−1
n∑
i=1

1{Ui ≤ t} ≤ t h−1

(
2 log(κ/δ) + 4 log (1 + log2(1/t))

nt

)
. (3.13)

The proof of Proposition 3.2.1 is given in Section B.2.1. It immediately leads to the following
result.

Theorem 3.2.1 In the top-k setting of Section 3.2.1, the following quantity is a (1−δ)-confidence
envelope in the sense of (3.1) for the top-k path:

FDP
Well

k = 1 ∧

(
mp(k)

k
h−1

(
2 log(κ/δ) + 4 log

(
1 + log2(1/p(k))

)
mp(k)

))
, (3.14)

with κ = π2/6.

Proof 3.2.1 We use (3.13) for (U1, . . . , Un) = (pi, i ∈ H0), n = m0, and t = p(k). We conclude
by using m0 ≤ m and the monotonicity property of Lemma B.4.1.

Remark 3.2.1 Denoting by Fn(t) the RHS of (3.13), we can easily check

sup
t∈((log logn)/n,1)

(
√
n

Fn(t)− t√
t log (1 + log2(1/t))

)
= O(1),

with a constant possibly depending on δ. The iterated logarithm in the denominator is known
from classical asymptotic theory (convergence to a Brownian bridge) to be unimprovable for a
uniform bound in the vicinity of 0; in this sense the above is a ‘finite law of the iterated logarithm
(LIL) bound’ (Jamieson et al., 2014).

3.2.4 FDP confidence bounds for BH and consistency

Applying the previous bounds for the particular BH rejection sets Rk̂α (see (3.7)) leads to the
following result.

Corollary 3.2.1 In the top-k setting of Section 3.2.1, for any α, δ ∈ (0, 1), the following quan-
tities are (1− δ)-confidence bounds for FDP(Rk̂α), the FDP of the BH procedure at level α:

FDP
Simes

α = 1 ∧ (α/δ); (3.15)

FDP
DKW

α = 1 ∧

(
α+

m1/2
√

0.5 log 1/δ

1 ∨ k̂α

)
; (3.16)

FDP
KR

α = 1 ∧
(

log(1/δ)

log(1 + log(1/δ))

(
α+ 1/(1 ∨ k̂α)

))
; (3.17)

FDP
Well

α = 1 ∧

α h−1

2 log(κ/δ) + 4 log
(

1 + log2

(
m

α(1∨k̂α)

))
α(1 ∨ k̂α)

 , (3.18)
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where κ = π2/6, k̂α denotes the number of rejections of the BH procedure (3.7) at level α,
and where the KR bound requires in addition δ ≤ 0.31. Moreover, these bounds are also valid
uniformly in α ∈ (0, 1), in the sense that

P(∀α ∈ (0, 1),FDP(Rk̂α) ≤ FDP
Meth

α ) ≥ 1− δ, Meth ∈ {Simes,DKW,KR,Well},

and thus also when using a post hoc choice α = α̂ of the level.

Proof 3.2.2 For (3.18), we use (3.13) for (U1, . . . , Un) = (pi, i ∈ H0), n = m0, and t =

α(1 ∨ k̂α)/m.

Let us now consider the consistency property (3.3). Among the four above bounds, it is
apparent that Simes and KR are never consistent, because of the constant in front of α; namely,
for all m,

FDP
Simes

α ∧ FDP
KR

α ≥ 1 ∧ (cα),

for some constant c > 1. By contrast, FDP
DKW

α and FDP
Well

α are consistent in the sense of (3.3)
in a regime such that m1/2/k̂α0

= oP (1) and (log logm)/k̂α0
= oP (1), respectively. The latter

means that the BH procedure at level α0 should make enough rejections. This is discussed for a
particular setting in the next result.

Proposition 3.2.2 Let us consider the sequence of sparse one-sided Gaussian location models
(P

(m)
b,c,β ,m ≥ 1) with fixed parameters b ∈ R, c ∈ (0, 1) and a sparsity parameter β ∈ [0, 1), as

defined in Section B.1.1. Then we have for all α ∈ (0, 1),

FDP
DKW

α − α �
P

(m)
b,c,β

m−1/2+β ;

FDP
Well

α − α �
P

(m)
b,c,β

√
log log(m)m−1/2+β/2,

where um �P vm stands for um = OP (vm) and vm = OP (um). In particular, concerning the
consistency (3.3) for the sequence (P

(m)
b,c,β ,m ≥ 1) and the BH procedure:

• for the DKW envelope (3.9) and the corresponding bound (3.16), the consistency (3.3) holds
when β < 1/2 but fails for β ≥ 1/2;

• for the Wellner envelope (3.14) and the corresponding bound (3.18), the consistency (3.3)
holds for any arbitrary β ∈ (0, 1).

Proof 3.2.3 By Theorem B.1.1, we have k̂α �P
(m)
b,c,β

m1−β. This gives the result (by applying in

addition Lemma B.4.1 for the Wellner bound).

Proposition 3.2.2 shows the superiority of the Wellner bound on the DKW bound for achieving
the consistency property on a particular sparse sequence models: while the DKW bound needs
a model dense enough (β < 1/2), the Wellner bound covers the whole sparsity range β ∈ (0, 1).
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3.2.5 Adaptive envelopes
Let us consider the following upper-bounds for m0:

m̂Simes
0 = m ∧ inf

t∈(0,δ)

Vt
1− t/δ

; (3.19)

m̂DKW
0 = m ∧ inf

t∈(0,1)

(
C1/2

2(1− t)
+

√
C

4(1− t)2
+

Vt
1− t

)2

; (3.20)

m̂KR
0 = m ∧ inf

t∈(0,1/C′)

C ′ + Vt
1− C ′t

; (3.21)

m̂Well
0 = m ∧ inf

t∈(0,1)

(√
tCt

2(1− t)2
+

√
Ct

2(1− t)2
+

Vt
1− t

)2

, (3.22)

where Vt =
∑m
i=1 1{pi > t}, C = log(1/δ)/2, C ′ = log(1/δ)

log(1+log(1/δ)) , Ct = 2 log(κ/δ)+4 log (1 + log2(1/t)),
κ = π2/6. Since Vt/(1 − t) corresponds to the so-called Storey estimator Storey et al. (2004),
these four estimators can all be seen as Storey-type confidence bounds, each including a specific
deviation term that takes into account the probability error δ. Note that m̂DKW

0 was already
proposed in Durand et al. (2020).

Proposition 3.2.3 In the top-k setting of Section 3.2.1, the envelopes defined by (3.8), (3.9),
(3.10) and (3.14) with m replaced by the corresponding bound m̂Simes

0 (3.19), m̂DKW
0 (3.20), m̂KR

0

(3.21) or m̂Well
0 (3.22), respectively, are also (1− δ)-confidence envelopes in the sense of (3.1) for

the top-k path.

We can easily check that these four adaptive envelopes all uniformly improve their own non-
adaptive counterpart. The proof of Proposition 3.2.3 is provided in Section B.2.2.

Remark 3.2.2 In practice, the bounds m̂Simes
0 (3.19), m̂DKW

0 (3.20), m̂KR
0 (3.21) or m̂Well

0 (3.22)
can be computed by taking an infimum over t = p(k), 1 ≤ k ≤ m and by replacing Vt by m− k.

Applying Proposition 3.2.3 for the BH procedure, this gives rise to the following adaptive
confidence bounds.

Corollary 3.2.2 In the top-k setting of Section 3.2.1, for any α, δ ∈ (0, 1), the following quan-
tities are (1− δ)-confidence bounds for the FDP of the BH procedure at level α:

FDP
Simes-adapt

α = 1 ∧ α(m̂Simes
0 /m)/δ; (3.23)

FDP
DKW-adapt

α = 1 ∧
(
α(m̂DKW

0 /m) +
(m̂DKW

0 )1/2
√

0.5 log 1/δ

1 ∨ k̂α

)
; (3.24)

FDP
KR-adapt

α = 1 ∧
(

log(1/δ)

log(1 + log(1/δ))

(
α(m̂KR

0 /m) + 1/(1 ∨ k̂α)
))

; (3.25)

FDP
Well-adapt

α = 1 ∧

α(m̂Well
0 /m) h−1

2 log(κ/δ) + 4 log
(

1 + log2

(
m

α(1∨k̂α)

))
α(1 ∨ k̂α)m̂Well

0 /m

 , (3.26)

where κ = π2/6, k̂α denotes the number of rejections of BH procedure (3.7) at level α, and
where the KR-adapt bound requires in addition δ ≤ 0.31. Moreover, these bounds are also valid
uniformly in α ∈ (0, 1) and thus also when using a post hoc choice α = α̂ of the level.
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Proof 3.2.4 For (3.26), we use (3.13) for (U1, . . . , Un) = (pi, i ∈ H0), n = m0, t = α(1∨k̂α)/m,
and the fact that m0 ≤ m̂Well

0 on the considered event by the proof in Section B.2.2. The other
bounds are proved similarly.

3.2.6 Interpolated bounds
According to Remark 3.1.1, the coverage (3.1) is still valid after the interpolation operation given
by (3.2). As a result, the above confidence envelopes can be improved as follows:

F̃DP
Simes

k = min
k′≤k
{k − k′ + k′ ∧ (mp(k′)/δ)}/k; (3.27)

F̃DP
DKW

k = min
k′≤k
{k − k′ + k′ ∧ (mp(k′) +m1/2

√
0.5 log 1/δ)}/k; (3.28)

F̃DP
KR

k = min
k′≤k

{
k − k′ + k′ ∧

(
log(1/δ)

log(1 + log(1/δ))

(
mp(k′) + 1

))}
/k; (3.29)

F̃DP
Well

k = min
k′≤k

{
k − k′ + k′ ∧

(
mp(k′) h

−1

(
2 log(κ/δ) + 4 log

(
1 + log2(1/p(k′))

)
mp(k′)

))}
/k,

(3.30)

respectively. When applied to BH rejection set, this also provides new confidence bounds
F̃DP

Simes

α , F̃DP
DKW

α , F̃DP
KR

α , F̃DP
Well

α , that can further be improved by replacing m by the cor-
responding estimator m̂0.

3.3 Results in the pre-ordered case

In this section, we build consistent envelopes in the case where the p-values are ordered a priori,
which covers the famous ‘knockoff’ case.

3.3.1 Pre-ordered setting
Let π : {1, . . . ,m} → {1, . . . ,m} be some ordering of the p-values that is considered as given
and deterministic (possibly coming from independent data). The pre-ordered setting is for-
mally the same as the one of Section 3.2.1, except that the p-value set is explored accord-
ing to π(1), π(2), . . . , π(m). The rationale behind this is that the alternative null hypotheses
H1 = {1, . . . ,m}\H0 are implicitly expected to be more likely to have a small rank in the
ordering π (although this condition is not needed for the future controlling results to hold).

Formally, the considered path is

Rk = {π(i) : 1 ≤ i ≤ k, pπ(i) ≤ s}, k = 1, . . . ,m, (3.31)

for some fixed additional threshold s ∈ (0, 1] (possibly coming from independent data) and can
serve to make a selection. The aim is still to find envelopes (FDPk)k satisfying (3.1) for this
path while being consistent. To set up properly the consistency, we should consider an FDR
controlling procedure that is suitable in this setting. For this, we consider the Lei Fithian (LF)
adaptive Selective sequential step-up procedure (Lei and Fithian, 2016). The latter is defined by
Rk̂α where

k̂α = max
{
k ∈ {0, . . . ,m} : F̂DPk ≤ α

}
, F̂DPk =

s

1− λ
1 +

∑k
i=1 1{pπ(i) > λ}

1 ∨
∑k
i=1 1{pπ(i) ≤ s}

, (3.32)



56 CHAPTER 3. False discovery proportion envelopes with consistency

where λ ∈ [0, 1) is an additional parameter. The ‘knockoff’ setting of Barber and Candès (2015)
can be seen as a particular case of this pre-ordered setting, where the p-values are independent
and binary, the ordering is independent of the p-values and s = λ = 1/2. The LF procedure
reduces in that case to the classical Barber and Candès (BC) procedure.

3.3.2 New confidence envelopes

The first envelope is as follows.

Theorem 3.3.1 Consider the pre-ordered setting of Section 3.3.1 with s ∈ (0, 1]. For all δ ∈
(0, 1), λ ∈ [0, 1), the following is a (1− δ)-confidence envelope for the ordered path (3.31) in the
sense of (3.1):

FDP
Freed

k = 1 ∧
s

1−λ
∑k
i=1 1{pπ(i) > λ}+ ∆(νk)∑k

i=1 1{pπ(i) ≤ s}
, k ≥ 1, (3.33)

where ∆(u) = 2
√
εu
√

(u ∨ 1)+ 1
2εu, εu = log((1+κ)/δ)+2 log (1 + log2 (u ∨ 1)), u > 0, κ = π2/6

and ν = s(1 + min(s, λ)/(1− λ)).

The proof of Theorem 3.3.1 is a direct consequence of a more general result (Theorem B.3.1),
itself being a consequence of a uniform version of Freedman’s inequality (see Section B.3.2).

The second result comes from the KR envelope (Katsevich and Ramdas, 2020):

FDP
KR

k = 1 ∧

(
log(1/δ)

a log(1 + 1−δB/a
B )

a+ s
1−λ

∑k
i=1 1{pπ(i) > λ}

1 ∨
∑k
i=1 1{pπ(i) ≤ s}

)
, (3.34)

where a > 0 is some parameter, B = s/(1−λ) and it is assumed λ ≥ s. While the default choice
in KR is a = 1, we can build up a new envelope by taking a union bound over a ∈ N\{0}:

Theorem 3.3.2 Consider the pre-ordered setting of Section 3.3.1 with s ∈ (0, 1]. For all δ ∈
(0, 1) and λ ∈ [s, 1], the following is a (1− δ)-confidence envelope for the ordered path (3.31) in
the sense of (3.1):

FDP
KR-U

k = 1 ∧ min
a∈N\{0}

{
log(1/δa)

a log(1 + 1−δB/aa

B )

a+ s
1−λ

∑k
i=1 1{pπ(i) > λ}

1 ∨
∑k
i=1 1{pπ(i) ≤ s}

}
, k ≥ 1, (3.35)

for δa = δ/(κa2), a ≥ 1, for B = s/(1− λ), κ = π2/6.

The envelope (3.35) is less explicit than (3.33) but has a better behavior in practice, as we
will see in the numerical experiments of Section 3.5.

3.3.3 Confidence bounds for LF and consistency

Recall that the LF procedure (3.32) is the reference FDR-controlling procedure in this setting.
Applying the above envelopes for the LF procedure gives the following confidence bounds.

Corollary 3.3.1 In the pre-ordered setting of Section 3.3.1 with a selection threshold s ∈ (0, 1],
for any α, δ ∈ (0, 1), λ ∈ [s, 1] the following quantities are (1− δ)-confidence bounds for the FDP
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of the LF procedure with parameters s, λ at level α:

FDP
KR

α = 1 ∧

(
log(1/δ)

log(1 + 1−δB
B )

(α+ 1/(1 ∨ r̂α))

)
; (3.36)

FDP
Freed

α = 1 ∧
(
α+ ∆(νk̂α)/(1 ∨ r̂α)

)
(3.37)

FDP
KR-U

α = 1 ∧ min
1≤a≤1∨r̂α

{
log(1/δa)

a log(1 + 1−δB/aa

B )
(α+ a/(1 ∨ r̂α))

}
, (3.38)

for ν = s(1 + s/(1 − λ)), B = s/(1 − λ), δa = δ/(κa2), a ≥ 1, κ = π2/6, ∆(·) defined in
Theorem 3.3.1 and where k̂α is as in (3.32) and r̂α =

∑k̂α
i=1 1{pπ(i) ≤ s} denotes the number

of rejections of LF procedure at level α. In addition, these bounds are also valid uniformly in
α ∈ (0, 1) in the sense that

P(∀α ∈ (0, 1),FDP(Rk̂α) ≤ FDP
Meth

α ) ≥ 1− δ, for Meth ∈ {KR,Freed,KR-U},

and thus also when using a post hoc choice α = α̂ of the level.

Proof 3.3.1 This is direct by applying (3.34) (a = 1), (3.33) and (3.35) to the rejection set Rk̂α .

Let us now study the consistency property (3.3). It is apparent that KR is never consistent:
namely, for all m ≥ 1,

FDP
KR

α ≥ 1 ∧ cα,

for some constant c > 1. By contrast, FDP
Freed

α is consistent if ∆(νm)/r̂α tends to 0 in probability,
that is, (m log logm)1/2/r̂α = oP (1). For FDP

KR-U

α , we always have

FDP
KR-U

α ≤ log(1/δâ)

â log(1 +
1−δB/ââ

B )

(
α+ 1/(1 ∨ r̂α)1/2

)
by considering â = b(1 ∨ r̂α)1/2c. By Lemma B.4.3, this provides consistency (3.3) as soon as
1/r̂α = oP (1). The following proposition gives an example where the latter condition holds in
the varying coefficient two-groups (VCT) model of Lei and Fithian (2016), that we generalize to
the possible sparse case in Section B.1.2.

Proposition 3.3.1 Consider the sequence of generalized VCT models (P
(m)
π,β,F0,F1

,m ≥ 1), as
defined in Section B.1.2. Assume that the parameters π, β, F0, F1 satisfy the assumptions of
Theorem B.1.2 given in Appendix B.1.2 (assuming in particular that α0 > α where α is defined
by (B.7)). Then the consistency (3.3) holds for the sequence (P

(m)
π,β,F0,F1

,m ≥ 1) and for any LF
procedure using λ ≥ s in either of the two following cases:

• for the KR-U envelope (3.35) and the corresponding bound (3.38).

• for the Freedman envelope (3.33) and the corresponding bound (3.37) if either λ = s or
β < 1/2;

Proof 3.3.2 This is a direct consequence of Theorem B.1.2 because m1−β/r̂α = OP (1) in that
context and r̂α is nondecreasing in α. To see why the Freedman envelope is consistent when λ = s,
we note that in this case k̂α =

∑k̂α
i=1 1{pπ(i) ≤ s}+

∑k̂α
i=1 1{pπ(i) > λ} ≤ (1+αs/(1−λ))(1∨ r̂α),

hence the quantity ∆(νk̂α)/(1 ∨ r̂α) is oP (1) as 1/r̂α = oP (1).
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We would like to emphasize that the power analysis made in Appendix B.1.2 provides new
insights with respect to Lei and Fithian (2016). First, it accommodates the sparse case for which
the probability of generating an alternative is tending to zero as m tends to infinity. Second, it
introduces a new criticality-type assumption (see (B.7)), which was overlooked in Lei and Fithian
(2016), but is necessary to get a non zero power at the limit (even in the dense case). Finally, it
allows to deal with binary p-values, which corresponds to the usual ‘knockoff’ situation.

Remark 3.3.1 Similarly to Section 3.2.6 in the top-k setting, the bounds KR, Freedman and
KR-U can be improved by performing the interpolation operation (3.2) in the pre-ordered setting.

3.4 Results in the online case

3.4.1 Online setting

We consider an infinite stream of p-values p1, p2, . . . testing null hypotheses H1, H2, . . . , respec-
tively. In the online setting, these p-values come one at a time and a decision should be made at
each time immediately and irrevocably, possibly on the basis of past decisions.

The decision at time k is to reject Hk if pk ≤ αk for some critical value αk only depending
on the past decisions. An online procedure is thus defined by a sequence of critical values
A = (αk, k ≥ 1), that is predictable in the following sense

αk+1 ∈ Gk = σ(1{pi ≤ αi}, i ≤ k), k ≥ 1.

A classical assumption is that each null p-value is super-uniform conditionally on past decisions,
that is,

P(pk ≤ x | Gk) ≤ x, k ∈ H0, (3.39)

where H0 = {k ≥ 1 | Hk = 0}. Condition (3.39) is for instance satisfied if the p-values are all
mutually independent and marginally super-uniform under the null.

For a fixed procedure A, we consider the path

Rk = {1 ≤ i ≤ k : pi ≤ αi}, k ≥ 1. (3.40)

We will also denote

R(k) =

k∑
i=1

1{pi ≤ αi}, k ≥ 1, (3.41)

the number of rejections before time k of the considered procedure. A typical procedure control-
ling the online FDR is the LORD procedure

αk = W0γk + (α−W0)γk−τ1 + α
∑
j≥2

γk−τj , (3.42)

where W0 ∈ [0, α], each τj is the first time with j rejections, (γk)k is a non-negative (‘spending’)
sequence with

∑
k≥0 γk ≤ 1 and γk = 0 for k < 0. The latter has been extensively studied in

the literature (Foster and Stine, 2008; Aharoni and Rosset, 2014; Javanmard and Montanari,
2018), and further improved by Ramdas et al. (2017). Under independence of the p-values and
super-uniformity of the p-values under the null, the LORD procedure controls the online FDR
in the sense of

sup
k≥1

E[FDP(Rk)] ≤ α,
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see Theorem 2 (b) in Ramdas et al. (2017). Here, we consider the different (and somehow more
demanding) task of finding a bound on the realized online FDP, by deriving confidence envelopes
(3.1). Note that this will be investigated for any online procedure and not only for LORD, see
Section 3.4.2. Also, we will study the consistency of the envelope for any LORD-type procedure
in Section 3.4.3.

3.4.2 New confidence envelopes
The first envelope is a consequence of the general result stated in Theorem B.3.1.

Theorem 3.4.1 In the online setting described in Section 3.4.1, consider any online procedure
A = (αk, k ≥ 1) and assume (3.39). Then for any δ ∈ (0, 1), the following is a (1− δ)-confidence
envelope for the path (3.40) in the sense of (3.1):

FDP
Freed

A,k = 1 ∧

∑k
i=1 αi + ∆

(∑k
i=1 αi

)
1 ∨R(k)

, k ≥ 1, (3.43)

where R(k) is given by (3.41), ∆(u) = 2
√
εu
√
u ∨ 1+ 1

2εu, εu = log((1+κ)/δ)+2 log (1 + log2 (u ∨ 1)),
u > 0 and κ = π2/6.

Proof 3.4.1 We apply Theorem B.3.1 in the online setting for λ = 0 (and further upper-
bounding each term 1{pπ(i) > 0} by 1), π(k) = k, because (B.15) is satisfied by (3.39).

Next, the envelope of Katsevich and Ramdas (2020) is as follows

FDP
KR

A,k = 1 ∧

 log(1/δ)

a log(1 + log(1/δ)/a)

(
a+

∑k
i=1 αi

)
1 ∨R(k)

 , (3.44)

for some parameter a > 0 to choose. While the default choice in Katsevich and Ramdas (2020)
is a = 1, applying a union w.r.t. a ∈ N\{0} provides the following result.

Theorem 3.4.2 In the online setting described in Section 3.4.1, and for any online procedure
A = (αk, k ≥ 1), for any δ ∈ (0, 1), the following is a (1 − δ)-confidence envelope for the path
(3.40) in the sense of (3.1):

FDP
KR-U

A,k = 1 ∧ min
a∈N\{0}

 log(1/δa)

a log(1 + log(1/δa)/a)

(
a+

∑k
i=1 αi

)
1 ∨R(k)

 , k ≥ 1, (3.45)

where R(k) is given by (3.41), δa = δ/(κa2), a ≥ 1, for κ = π2/6.

Remark 3.4.1 Note that the guarantee (3.1) is not uniform in the procedure A (by contrast
with the envelopes in top-k and preordered cases which were uniform in k and thus also in the
cut-off procedure).

3.4.3 Confidence envelope for LORD-type procedures and consistency
We now turn to the special case of online procedures satisfying the following condition:

k∑
i=1

αi ≤ α(1 ∨R(k)), k ≥ 1. (3.46)
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Classically, this condition is sufficient to control the online FDR (if the p-values are independent
and under an additional monotonicity assumption), see Theorem 2 (b) in Ramdas et al. (2017).
In particular, it is satisfied by LORD (3.42).

Corollary 3.4.1 In the online setting described in Section 3.4.1, consider any online procedure
A = (αk, k ≥ 1), satisfying (3.46) for some α ∈ (0, 1), and assume (3.39). Then for any
δ ∈ (0, 1), the following quantities are (1 − δ)-confidence bounds for the FDP of the procedure:
for all k ≥ 1,

FDP
KR

α,k = 1 ∧
(

log(1/δ)

log(1 + log(1/δ))
(α+ 1/(1 ∨R(k))

)
; (3.47)

FDP
Freed

α,k = 1 ∧
(
α+

∆ (α(1 ∨R(k)))

1 ∨R(k)

)
, k ≥ 1; (3.48)

FDP
KR-U

α,k = 1 ∧min
a≥1

{
log(1/δa)

a log(1 + log(1/δa)/a)
(α+ a/(1 ∨R(k))

}
, (3.49)

for δa = δ/(κa2), a ≥ 1, κ = π2/6, ∆(·) defined in Theorem 3.4.2 and where R(k) is given by
(3.41).

Proof 3.4.2 This is direct by applying (3.44) (a = 1), (3.48) and (3.49) and by using the
inequality (3.46) in the corresponding bound.

Let us now consider these bounds for the LORD procedure (3.42), and study the consistency
property (3.5). Clearly, we have FDP

KR

α ≥ 1 ∧ (cα) for all k ≥ 1, where c > 1 is a constant.
Hence, the envelope KR is not consistent. By contrast, it is apparent that both the Freedman
envelope and the uniform KR envelope are consistent provided that 1/R(k) = oP (1) as k tends to
infinity (consider a =

√
1 ∨R(k) and use Lemma B.4.3 for the KR-U envelope). This condition

is met in classical online models, as the following result shows.

Proposition 3.4.1 Consider the online one-sided Gaussian mixture model Pπ1,F1
of Section B.1.3

and the LORD procedure with W0 ∈ (0, α) and a spending sequence γk = 1
k(log(k))γ , k ≥ 1 for

γ > 1. Then both the Freedman envelope (3.48) and the uniform KR envelope (3.49) are consis-
tent in the sense of (3.5) for the model Pπ1,F1

.

Proof 3.4.3 This is a direct consequence of Theorem B.1.3, which provides that k1/2/R(k) =
OPπ1,F1

(1) when k tends to infinity.

Remark 3.4.2 Similarly to Section 3.2.6 in the top-k setting, the bounds KR, Freedman and
KR-U can be improved by performing the interpolation operation (3.2) in the online setting.

3.5 Numerical experiments

In this section, we illustrate our findings by conducting numerical experiments in each of the
considered settings: top-k, pre-ordered and online. Throughout the experiments, the default
value for δ is 0.25 and the default number of replications to evaluate each FDP bound is
1000. All our numerical experiments are reproducible from the code provided in the reposi-
tory https://github.com/iqm15/ConsistentFDP.

https://github.com/iqm15/ConsistentFDP
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3.5.1 Top-k
Here, we consider the top-k setting of Section 3.2.1, for alternative p-values distributed as F1(x) =

Φ(Φ
−1

(x)− µ) (one sided Gaussian location model), and for different values of µ and of π0. To
investigate the consistency property, we take m varying in the range {10i, 2 ≤ i ≤ 6}, and we
consider the FDP bounds FDP

Simes

α (3.15), FDP
DKW

α (3.16), FDP
KR

α (3.17), FDP
Well

α (3.18) for
α ∈ {0.05, 0.1, 0.15, 0.2}. We also add for comparison the hybrid bound

FDP
Hybrid

α,δ = min
(
FDP

KR

α,δ/2,FDP
Well

α,δ/2

)
,

which also provides the correct coverage while being close to the best between the Wellner and
KR bounds.

Figure 3.1 displays boxplots of the different FDP bounds in the dense case for which π0 = 1/2,
µ = 1.5. When m gets large, we clearly see the inconsistency of the bounds Simes, KR and the
consistency of the bounds Wellner, Hybrid, DKW, which corroborates the theoretical findings
(Proposition 3.2.2). In sparser scenarios, Figure 3.2 shows that the consistency is less obvious
for the Wellner and Hybrid bounds and gets violated for the DKW bound when m1 ∝ m0.55, as
predicted from Proposition 3.2.2 (regime β ≥ 1/2). Overall, the new bounds are expected to be
better as the number of rejections gets larger and KR bounds remain better when the number
of rejections is expected to be small. The hybrid bound hence might be a good compromise for
a practical use.

The adaptive versions of the bounds (Section 3.2.5) are displayed on Figure 3.3. By comparing
the left and the right panels, we see that the uniform improvement can be significant, especially
for the Wellner and DKW bounds. By contrast, the improvement for KR is slightly worse.
This can be explained from Figure 3.4, that evaluates the quality of the different π0 estimators.
DKW, which is close to an optimized Storey-estimator, is the best, followed closely by the Wellner
estimator.

Remark 3.5.1 For clarity, the bounds are displayed without the interpolation improvement (3.2)
(for top-k and preordered). The figures are reproduced together with the interpolated bounds in
Appendix B.5 for completeness. In a nutshell, the interpolation operation improves significantly
the bounds mainly when they are not very sharp (typically small m or very sparse scenarios).
Hence, while it can be useful in practice, it does not seem particularly relevant to study the
consistency phenomenon.

3.5.2 Pre-ordered
We consider data generated as in the pre-ordered model presented in Section 3.3.1 and more
specifically as in the VCT model of Section B.1.2. The trueness/falseness of null hypotheses are
generated independently, and the probability of generating an alternative is decreasing with the
position 1 ≤ k ≤ m, and is given by π(mβ−1k), where π : [0,∞) → [0, 1) is some function (see
below) and β ∈ [0, 1) is the sparsity parameter. Once the process of true/false nulls is given, the
p-values are generated according to either:
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 3.1: Top-k dense case (π0 = 0.5, µ = 1.5).

Figure 3.2: Top-k sparse case π0 = 1 − 0.5m−0.25, µ =
√

2 log(m) (left) π0 = 1 − 0.5m−0.55,
µ =10 (right), α = 0.2.
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Non adaptive Adaptive

Figure 3.3: Top-k dense case with nonadaptive bounds (left) and adaptive bounds (right) (π0 =
0.5, α = 0.2).

Figure 3.4: Boxplots of the estimators π̂0 in the top-k dense case (π0 = 0.5, α = 0.2).
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• LF setting: π(t) = π1e
−bt b

1−e−b , t ≥ 0, so that Π(1) = π1. Here π1 is equal to 0.4 and
b, measuring the quality of the prior ordering, is equal to 2. In addition, the alternative
p-values are one-sided Gaussian with µ = 1.5. Note that this is the setting considered in
the numerical experiments of Lei and Fithian (2016).

• Knockoff setting: π(t) = 1/2+(0∨1/2( z−tz−1 )), t ≥ 0, with z > 1 a parameter that determines
how slowly the probability of observing signal deteriorates, taken equal to 30. Then, the
binary p-values are as follows: under the null pi = 1/2 or 1 with equal probability. Under
the alternative, pi = 1/2 with probability 0.9 and pi = 1 otherwise.

In both settings, the dense (resp. sparse) case refers to the sparsity parameter value β = 0 (resp.
β = 0.25).

We consider the bounds FDP
KR

α (3.36), FDP
Freed

α (3.37) and FDP
KR-U

α (3.38) for the LF pro-
cedure across different values of (λ, s) ∈ {(1/2, 0.1α), (1/2, 1/2)}, m ∈ {10i, 2 ≤ i ≤ 6}, and
α ∈ {0.05, 0.1, 0.15, 0.2}. The procedure LF with (λ, s) = (1/2, 1/2) is referred to as the Barber
and Candès (BC) procedure.

Figure 3.5 displays the boxplots of these FDP bounds for the LF procedure with (λ, s) =
(1/2, 0.1α) in the LF setting with β = 0 (dense case). It is apparent that KR is not consistent,
while the new bounds Freedman and KR-U are. Also, the bound KR-U is overall the best, losing
almost nothing w.r.t. KR when the number of rejections is very small (say m = 100 and α = 0.05
or 0.1) and making a very significant improvement otherwise. Similar conclusions hold for the case
of BC procedure, see Figure 3.7. Next, to stick with a very common scenario, we also investigate
the sparse situation where the fraction of signal is small in the data, see Figures 3.6 and 3.8.
As expected, while the conclusion is qualitatively the same, the rejection number gets smaller so
that the consistency is reached for largest values of m (i.e., the convergence is ‘slowed down’).

3.5.3 Online

We now consider the online case, by applying our method to the real data example coming from
the International Mice Phenotyping Consortium (IMPC) (?), which is a consortium interested in
the genotype effect on the phenotype. This data is collected in an online fashion for each gene of
interest and is classically used in online detection works (see Ramdas et al. (2017) and references
therein).

Figure 3.9 displays the FDP time-wise envelopes k 7→ FDP
KR

α,k (3.47), k 7→ FDP
Freed

α,k (3.48)
and k 7→ FDP

KR-U

α,k (3.49), for the LORD procedure (3.42) (W0 = α/2 with the spending sequence
γk = k−1.6, k ≥ 1). As we can see, the Freedman and KR-U envelopes both tend to the nominal
level α, as opposed to the KR envelope, which is well expected from the consistency theory. In
addition, KR-U seems to outperform the Freedman envelope and while KR is (slightly) better
than KR-U in the initial segment of the process (k < 300), we can see that KR-U gets rapidly
more accurate.
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 3.5: Preordered dense (β = 0) LF setting with LF procedure (s = 0.1α, λ = 0.5).
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure 3.6: Preordered sparse (β = 0.25) LF setting with LF procedure (s = 0.1α, λ = 0.5).

α = 0.15 α = 0.2

Figure 3.7: Pre-ordered dense (β = 0) knockoff setting with BC procedure (i.e., LF procedure
with s = λ = 0.5).
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α = 0.15 α = 0.2

Figure 3.8: Pre-ordered sparse (β = 0.25) knockoff setting with BC procedure (i.e., LF procedure
with s = λ = 0.5).

3.5.4 Comparison to Li et al. (2022)

In this section, we compare the performances of the KR-U bound with respect to the recent
bounds proposed in Li et al. (2022). For this, we reproduce the high dimensional Gaussian
linear regression setting of Section 5.1 (a) therein, which generates binary p-values by applying
the fixed-X ‘sdp’ knockoffs and the signed maximum lambda knockoff statistic of Barber and
Candès (2015). Doing so, the p-values follow the preordered setting of Section 3.3.1 and thus
our bounds are non-asymptotically valid (note however that the p-values do not follow strictly
speaking the VCT model of Section B.1.2). To be more specific, the considered Gaussian linear
model Y ∼ N (Xβ, In) is obtained by first generating X and β as follows: the correlated design
matrix X of size n×m is obtained by drawing n = 1500 i.i.d. samples from the multivariate m-
dimensional distribution Nm(0,Σ) where Σi,j = 0.6|i−j|, 1 ≤ i, j ≤ m; the signal vector β ∈ Rm
is obtained by first randomly sampling a subset of {1, . . . ,m} of size bπ1mc for the non-zero
entries of β and then by setting all non-zero entries of β equal to a/

√
n for a given amplitude

a > 0.
First, in the spirit of Figure 3 in Li et al. (2022), we display in Figure 3.10 the envelope

(F̃DP
KR-U

k , k ≥ 1) given by the interpolation (3.2) of the envelope (FDP
KR-U

k , k ≥ 1) defined by
(3.35) (with s = λ = 1/2), and compare it to those obtained in Li et al. (2022) (namely, KJI
A/B/C/D) for π1 ∈ {0.1, 0.5}, a ∈ {15, 25}. We also set here δ = 0.05 to stick with the choice
of Li et al. (2022) (note that this requires to further calibrate the parameters of their method
according to this value of δ) and the number of replications is here only taken equal to 10 for
computational reasons. Markedly, the KR-U envelope becomes much better than KR and is
competitive w.r.t. KJI A/B/C/D, at least when k is moderately large. As expected, the most
favorable case for KR-U is when the signal has a large amplitude and is dense.

Second, to stick with the consistency-oriented plots of the previous sections, we also display
the corresponding FDP bounds for the BC procedure at level α ∈ {0.15, 0.2} in Figure 3.11. The
conclusions are qualitatively similar.
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Figure 3.9: Online FDP envelopes for LORD applied on IMPC data for four values of α ∈
{0.05, 0.1, 0.15, 0.2} (horizontal black bars). The interpolated bounds are displayed for each
procedure as a gray dashed line.
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Figure 3.10: Comparing the envelope F̃DP
KR-U

k , k ≥ 1 given by (3.2)-(3.35) (s = λ = 0.5) to
those of Li et al. (2022) in the Gaussian linear regression setting of Section 3.5.4 for m = 1000
(see text for more details).
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Figure 3.11: Comparing the FDP bound F̃DP
KR-U

k̂α for k̂α the BC procedure (3.32) (s = λ = 0.5)
to those of Li et al. (2022) with respect to α ∈ {0.15, 0.2} in the Gaussian linear regression setting
of Section 3.5.4 for m = 1000 (see text for more details).
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3.6 Conclusion

The main point if this paper is to provide another point of view on FDP confidence bounds:
we introduced a notion of consistency, a desirable asymptotical property which should act as
a guiding principle when building such bounds, by ensuring that the bound is sharp enough
on particular FDR controlling rejection sets. Doing so, some previous bounds were shown to
be inconsistent, as the original KR bounds; while some other known FDP confidence bounds,
in particular based on the DKW inequality, are consistent under certain assumptions, we have
introduced new ones shown to satisfy this condition under more general conditions (in particular
high sparsity). New bounds based on the classical Wellner/Freedman inequalities showed inter-
esting behaviors, however simple modifications of KR bounds Hybrid/KR-U by ‘stitching’ have
been shown to be the most efficient, both asymptotically and for moderate sample size. Overall,
this work shows that consistency is a simple and fruitful criterion, and we believe that using it
will be beneficial in the future to make wise choices among the rapidly increasing literature on
FDP bounds.
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A unified class of null proportion
estimators with plug-in FDR control

Outline of the current chapter

4.1 Introduction 74
4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Framework 76
4.2.1 Distributional assumptions . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 FDR control for plug-in estimates . . . . . . . . . . . . . . . . . . . . 76

4.3 A unified class of plug-in estimators 77
4.4 Homogeneous estimators 80

4.4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 More details on the Pounds and Cheng estimator . . . . . . . . . . . 81

4.5 Adjusted estimators for discrete p-values 82
4.5.1 Transformations of discrete p-values . . . . . . . . . . . . . . . . . . 83
4.5.2 Adjusting the rescaling constants . . . . . . . . . . . . . . . . . . . . 83
4.5.3 A randomization approach . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Discussion 90

Since the work of Storey et al. (2004), it is well-known that the performance of the Benjamini-
Hochberg (BH) procedure can be improved by incorporating estimators of the number (or pro-
portion) of null hypotheses, yielding an adaptive BH procedure which still controls FDR. Several
such plug-in estimators have been proposed since then, for some of these, like Storey’s estimator,
plug-in FDR control has been established, while for some others, e.g. the estimator of Pounds
and Cheng (2006), some gaps remain to be closed. In this work we introduce a unified class of
estimators, which encompasses existing and new estimators and unifies proofs of plug-in FDR
control using simple convex ordering arguments. We also show that any convex combination of
such estimators once more yields estimators with guaranteed plug-in FDR control. Additionally,

73
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the flexibility of the new class of estimators also allows incorporating distributional informations
on the p-values. We illustrate this for the case of discrete tests, where the null distributions of
the p-values are typically known. In that setting, we describe two generic approaches for adapt-
ing any estimator from the general class to the discrete setting while guaranteeing plug-in FDR
control. While the focus of this paper is on presenting the generality and flexibility of the new
class of estimators, we also include some analyses on simulated and real data.

4.1 Introduction

4.1.1 Background

When many statistical tests are performed simultaneously, an ubiquituous way to account for
the false rejections is the false discovery rate (FDR), that is the expected proportion of errors
among the rejections. The seminal Benjamini and Hochberg (1995) procedure (abbreviated in
the sequel as BH procedure) works by rejecting H(1), . . . ,H(k̂), where k̂ is determined in the
following step-up manner

k̂ = max

{
` ∈ {0, . . . ,m} : p(`) ≤

`

m
· α
}
, (4.1)

where p(1) ≤ . . . ≤ p(m) denote the ordered p-values, and H(1), . . . ,H(m) the corresponding
null hypotheses and p(0) := 0. According to results in Benjamini and Hochberg (1995) and
Benjamini and Yekutieli (2001), this procedure guarantees that FDR ≤ π0α when the p-values
are independent or positively dependent, while for arbitrarily dependent p-values the Benjamini
and Yekutieli (2001) procedure is available. The simplicity of the BH procedure and its many
useful theoretical properties have made it an indispensable tool in modern high dimensional data
analysis, see e.g. Benjamini (2010). Much work has gone into analyzing, extending and adapting
this procedure to various settings.

In this context, Storey et al. (2004) showed that the plug-in BH procedure

k̂ = max

{
` ∈ {0, . . . ,m} : p(`) ≤

`

m̂0
· α
}
, (4.2)

obtained by replacing m in (4.1) by an estimate m̂0 of m0 still provides so called adaptive or plug-
in FDR control at level α while allowing for more power. Classical examples of such estimates
were proposed by Storey et al. (2004)

m̂Storey
0 =

1 +
∑m
i=1 1{pi > λ}
1− λ

, (4.3)

where λ ∈ [0, 1) is a tuning parameter, and by Pounds and Cheng (2006)

m̂PC,2006
0 = 1 ∧

(
2

m∑
i=1

pi

)
. (4.4)

While the focus of this work is on plug-in FDR control, estimates of m0 (or equivalently
π0 = m0/m) can also be used for FDR estimation purposes (see Storey (2002)). Thus, there
is a large body of literature on this topic and numerous methods for establishing plug-in FDR
control are available, see e.g. Benjamini et al. (2006); Sarkar (2008); Blanchard and Roquain
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(2009); Heesen and Janssen (2016); Ditzhaus and Janssen (2019) and references therein. In this
paper, we use a classical condition proposed by Blanchard and Roquain (2009) for establishing
plug-in FDR control for a unified class of m0-estimators, see Section 4.2.2 for more details.

Previous work on plug-in FDR control has focused on continuous test statistics, for which the
null p-values are distributed according to the uniform distribution. Considering the abundance
of super-uniform p-values in real life applications, the uniformity assumption is often violated
which may lead to undesirable conservatism of them0-estimators, see Section 4.5 for more details.
Super-uniform p-values can be observed when testing composite null hypotheses or when dealing
with discrete tests, the latter being the setting of our interest in this work.

Discrete tests often originate when the tests are based on counts or contingency tables: for
example in clinical studies, the efficacy or safety of drugs is determined by counting patients
who survive a certain period, or experience a certain type of adverse drug reaction after being
treated, see e.g. Chavant et al. (2011); and also in biology, where the genotype effect on the
phenotype can be analyzed by knocking out genes and counting the number of individuals with
a changed phenotype, see e.g. Muñoz-Fuentes et al. (2018). In discrete testing, each p-value
is super-uniform and (potentially) has its own support, thus producing heterogeneous p-values.
Pounds and Cheng (2006) recognized the need for developing methods tailored to discrete p-
values and introduced m̂PC,2006

0 as a simple and robust m0-estimate in this setting. They did
not, however, provide a proof of plug-in FDR control, not even in the uniform setting. Further
works adressing the discreteness and heterogeneity include Chen et al. (2018) who introduced a
m0-estimator for discrete p-values based on averaging Storey type estimators for plug-in control.
Biswas and Chattopadhyay (2020) pointed out an error in the proof of Chen et al. (2018) and
provided a corrected version. However it is unclear whether this estimator actually provides an
improvement over the classical (uniform) Storey estimator in practice. Thus, there are gaps to
be filled on m0-estimation both for the uniform and discrete case.

4.1.2 Contributions
In this paper we address some of the gaps and limitations mentioned above by introducing a
simple and flexible class of m0 estimators which has the following properties:

• Plug-in FDR control is guaranteed for all estimators contained in this class under inde-
pendence of p-values. We give a unified proof using simple convex ordering arguments (for
the reader’s convenience we restate some definitions and classical results on stochastic and
convex ordering in Appendix C.1).

• It provides a simple and flexible generic formulation which is useful for designing new
estimators. In particular, we obtain a simple modification of m̂PC,2006

0 with guaranteed
plug-in FDR control.

• Additional distributional information on the p-values like heterogeneity and super-uniformity
can be incorporated easily into estimators from the class. In particular, the estimators of
this class can be used in conjunction with classical discrete p-value transformations like the
mid-p transformation.

• Combining several weighted estimators from the class preserves plug-in FDR control.

The paper is organized as follows: Section 4.2 presents the statistical setting and restates
a classical sufficient criterion for plug-in FDR control. Section 4.3 introduces the new class of
estimators, and presents the main mathematical results on plug-in FDR control, followed by some
numerical results in Section 4.4. In Section 4.5 we present approaches for adjusting estimators to



76 CHAPTER 4. A unified class of null proportion estimators with plug-in FDR control

discreteness, and investigate their performance on simulated and real data. The paper concludes
with a discussion in Section 4.6. Technical details – including classical results on stochastic and
convex ordering– and further analyses are deferred to the Appendices.

4.2 Framework

4.2.1 Distributional assumptions

We use a classical setting for multiple testing encompassing homogeneous and heterogeneous
nulls, see e.g. Döhler et al. (2018). We observe X, defined on an abstract probabilistic space,
valued in an observation space (X ,X) and generated by a distribution P that belongs to a
set P of possible distributions. We consider m null hypotheses for P , denoted H0,i, 1 ≤ i ≤
m, and we denote the corresponding set of true null hypotheses by H0(P ) = {1 ≤ i ≤ m :
H0,i is satisfied by P}. We also denote by H1(P ) the complement of H0(P ) in {1, . . . ,m} and
by m0(P ) = m0 = |H0(P )| the number of true nulls.
We assume that there exists a set of p-values that is a set of random variables {pi(X), 1 ≤ i ≤ m},
valued in [0, 1]. We introduce the following dependence assumptions between the p-values:

All the p-values {pi(X), 1 ≤ i ≤ m} are mutually independent in the model P. (Indep)

The (maximum) null cumulative distribution function (c.d.f) of each p-value is denoted

Fi(t) = sup
P∈P : i∈H0(P )

{PX∼P (pi(X) ≤ t)}, t ∈ [0, 1], 1 ≤ i ≤ m. (4.5)

We assume that the set of c.d.f F = {Fi, 1 ≤ i ≤ m} is known and we consider the following
possible situations for the functions in F :

For all i ∈ {1, . . . ,m}, Fi is continuous on [0, 1] (Cont)

For all i ∈ {1, . . . ,m}, there exists some finite set Ai ⊂ [0, 1] such that
Fi is a step function, right continuous, that jumps only at some points of Ai.

(Discrete)

The case (Discrete) typically arises when for all P ∈ P and i ∈ {1, . . . ,m}, PX∼P (pi(X) ∈ Ai) =
1 for some given finite sets Ai ⊂ [0, 1]. Throughout the paper, we will assume that we are either
in the case (Cont) or (Discrete) and we denote A = ∪mi=1Ai, with by convention Ai = [0, 1] when
(Cont) holds. We will also make use of the following classical assumption:

For all i ∈ {1, . . . ,m}, Fi(t) ≤ t for all t ∈ [0, 1]. (SuperUnif)

In this paper we will always assume that the p-values are mutually independent ((Indep) holds)
and super-uniform under the null ((SuperUnif) holds).

4.2.2 FDR control for plug-in estimates

The following Theorem is a central result for plug-in FDR control, providing a sufficient condition
based on bounding the inverse moment of the estimator m̂0 by the inverse ofm0. Our presentation
follows Blanchard and Roquain (2009), similar results can be found in Benjamini et al. (2006);
Sarkar (2008); Zeisel et al. (2011).
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Theorem 4.2.1 Let m̂0 = m̂0(p1, . . . , pm) be a coordinatewise non-decreasing function of the p-
values (p1, . . . , pm). Assume that (p1, . . . , pm) are mutually independent (Indep) and (SuperUnif).
For h ∈ H0, denote by p0,h the set of p-values where ph has been replaced by 0. If

E

(
1

m̂0(p0,h)

)
≤ 1

m0
(IMC)

holds for all h ∈ H0, then the plug-in BH procedure given by (4.2) controls FDR at level α.

Throughout this paper, we will only consider coordinatewise non-decreasing estimators and
will always assume that the p-values are mutually independent. Thus, when additionally (SuperUnif)
holds true, the inverse moment criterion (IMC) is sufficient for establishing plug-in FDR control
in our proofs. We mostly present results in term of the absolute number of null hypotheses m0,
but clearly equivalent statements using the proportion of null hypotheses π0 = m0/m hold, and
in some cases we will present results in terms of π0 instead of m0.

4.3 A unified class of plug-in estimators

In this section, we introduce a new class of estimators for m0 (or equivalently π0) that mathe-
matically guarantees plug-in FDR control. It is based on sums of suitably transformed p-values,
allowing us to recover classical estimators, such as the Storey (4.3) and the PC (slightly modified)
(4.4) estimators, and also to define new estimators. We first present a general result for single
estimators and then show that plug-in FDR control is also preserved for convex combinations of
such estimators. To start, assume that the p-values are transformed by certain functions g ∈ G,
with

G = {g : [0, 1]→ [0, 1] : g is non-decreasing and Eg(U) > 0, where U ∼ U [0, 1]}. (4.6)

Accordingly we define the class of estimators F0 as

F0 =

{
m̂0 : [0, 1]m → [0,∞)| m̂0(p1, . . . , pm) =

1

ν(g)

(
1 +

m∑
i=1

g(pi)

)
, g ∈ G

}
, (4.7)

where ν(g) = Eg(U) for any g ∈ G with U ∼ U [0, 1] (for brevity we sometimes omit the g in
ν when there is no ambiguity concerning the function g). The class F0 contains the classical
estimator m̂Storey

0 (4.3) by taking g(u) = 1{u > λ} and ν = 1 − λ. It also contains a slightly
modified version m̂PC,new

0 of the classical estimator m̂PC,2006
0 (4.4) obtained from taking g(u) = u

with ν = 1/2, i.e.

m̂PC,new
0 = 2 + 2

m∑
i=1

pi. (4.8)

In Section 4.4 we will introduce some additional estimators and discuss m̂PC,new
0 in more detail.

The rationale behind the definitions of the classes G and F0 is two-fold. Requiring that g is
non-decreasing ensures that m̂0 is coordinatewise non-decreasing, allowing us to apply Theorem
4.2.1. The quantity g(pi)/ν can be interpreted as the (local) contribution of pi to the estimate of
m0. If we expect large p-values to provide evidence for null hypotheses, then it seems reasonable
to require g to be non-decreasing. Rescaling g(pi) by ν = Eg(U) is a simple way of ensuring that
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∑m
i=1 g(pi)/ν is conservatively biased in the sense that E(

∑m
i=1 g(pi)/ν) ≥ m0 in any constella-

tion of null and alternative hypotheses. This type of conservativeness may however not be strong
enough for plug-in control. As our main result – Proposition 4.3.1 below – shows, simply adding
1/ν as a ’safety margin’ to the above estimate is enough for ensuring plug-in FDR control.
In some situations p-values under the null may be heterogeneous, i.e. the p-values may have
different distributions under the null, so that using an individual transformation for each p-
value may be helpful. To this end, we introduce the following richer and more flexible class of
estimators.

F =

{
m̂0 : [0, 1]m → [0,∞)

∣∣∣∣ m̂0(p1, . . . , pm) =
1

min(ν1, . . . , νm)

+

m∑
i=1

gi(pi)

νi
, with gi ∈ G and νi = E[gi(U)], U ∼ U [0, 1] for all i

}
.

(4.9)

We state our main result on plug-in FDR control for this more general class below. Clearly,
F0 ⊂ F , so that the results stated for F also hold for F0. We now present an upper bound in the
convex order for transformed uniform random variables in terms of Bernoulli random variables,
which is the main technical tool we use for proving plug-in FDR control for the class F .

Lemma 4.3.1 For any g ∈ G we have g(U) 6cx Bin(1, ν) and ν = Eg(U), where U ∼ U [0, 1],
and the notation 6cx denotes the convex ordering (see Definition C.1.2).

Proof 4.3.1 For U ∼ U [0, 1] define X = g(U), so that E(X) = ν. Let lX = infx∈[0,1] g(x),
uX = supx∈[0,1] g(x) be the lower and upper endpoints of the support of X, and define a two-
point distribution Y concentrated on {lX , uX} by P (Y = lX) = (uX − ν)/(uX − lX) and P (Y =
uX) = (ν − lX)/(uX − lX). By Lemma C.1.1 we have X 6cx Y .
Now let Z ∼ Bin (1, ν) and denote the distribution function of Y and Z by F and G. Clearly,
EY = ν = EZ. Since [lX , uX ] ⊂ [0, 1] and both Y and Z are two-point distributions, the function
G−F posesses one crossing point on [0, 1). Indeed, for t ∈ [0, lX), F (t) = 0 while G(t) = 1−ν
so that G − F is positive, and for t ∈ [uX , 1), F (t) = 1 while G(t) = 1 − ν so that G − F is
negative. For t ∈ [lX , uX), G − F can be positive or negative depending on ν. Overall, the sign
sequence of G− F is +,− so that Lemma C.1.2 implies that Y 6cx Z and the claim follows.

The following proposition is our main result on plug-in FDR control.

Proposition 4.3.1 Assume that p1, . . . , pm are mutually independent and (SuperUnif) holds.
Then (IMC) holds true for any estimator m̂0 ∈ F , where F is defined by (4.9). In particular,
the BH plug-in procedure (4.2) using m̂0 controls FDR at level α.

Proof 4.3.2 Since m̂0 is coordinatewise non-decreasing, it is sufficient to verify (IMC). For
any h ∈ H0, monotonicity and super-uniformity give us m̂0(p0,h) >st 1/ν + S0, where ν =
minl∈H0\{h}νl, and S0 =

∑
`∈H0\{h} g`(U`)/ν` with (U`)`∈H0

i.i.d random variables distributed
according to U [0, 1]. By Lemma 4.3.1 we have g`(U`) 6cx Bin(1, ν`) and Lemma C.1.3 gives
Bin(1, νi)/νi 6cx Bin(1, ν)/ν. Since the convex ordering is preserved under convolutions (see
Lemma C.1.1) we obtain νS0 6cx Bin(m0− 1, ν). Finally, the mapping x 7→ ν/(1 +x) is convex
on [0,∞) and therefore from the Definition C.1.2 of 6cx we obtain that

E

(
1

m̂0(p0,h)

)
≤ E

(
1

1
ν + S0

)
= E

(
ν

1 + νS0

)
≤ E

(
ν

1 + Bin(m0 − 1, ν)

)
≤ 1

m0
, (4.10)
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where the last bound is a well-known result for the inverse moment of Binomial distributions (see
e.g. C.1.4 in Appendix) so that (IMC) is proved. The statement on plug-in FDR control now
follows from Theorem 4.2.1.

By taking g(u) = 1{u > λ} we have νS0 ∼ Bin(m0 − 1, ν) and therefore the second inequality
from the right in (4.10) can be replaced by an equality. Thus, it may be tempting to conclude
that m̂Storey

0 is optimal. In the case of a Dirac-Uniform constellation of p-values (see Blanchard
and Roquain (2009)) this is indeed true, since νm̂Storey

0 ∼ 1 + Bin(m0 − 1, ν) and therefore the
left inequality in (4.10) can also be replaced by an equality. In more general settings however,
other choices of g may be better, as the results in Section 4.4.1 show.

We highlight that introducing a general class of estimators as (4.9) with Proposition 4.3.1
allows a unified proof of plug-in FDR control for known estimators like m̂Storey

0 and m̂PC,new
0

and also for new estimators that we will define in Section 4.4. Additionally, the classes F0 and
F possess stability properties that make it possible to combine various plug-in estimators while
maintaining FDR control.

Proposition 4.3.2 Let m̂1, m̂2 ∈ F , where F is defined by (4.9) and let λ ∈ [0, 1]. Then the
BH plug-in procedure (4.2) using m̂0 = λm̂1 + (1− λ)m̂2 controls FDR at level α.

Proof 4.3.3 We show that m̂0 satisfies (IMC). Let m̂1, m̂2 ∈ F have the representation

m̂1 =
1

ν
+

m∑
i=1

gi(pi)

νi
and m̂2 =

1

µ
+

m∑
i=1

hi(pi)

µi
,

where ν = min(ν1, . . . , νm) and µ = min(µ1, . . . , µm) so that

m̂0 =
λ

ν
+

1− λ
µ

+

m∑
i=1

λgi(pi)

νi
+

(1− λ)hi(pi)

µi

and define weights κi = λµi
λµi+(1−λ)νi

and transformations fi = κigi+(1−κi)hi. Clearly, κi ∈ [0, 1]

and fi ∈ G and we introduce εi = E(fi) = κiνi+(1−κi)µi. From the above definitions we obtain
with some straightforward algebra

λ =
κiνi
εi

and 1− λ =
(1− κi)µi

εi
(4.11)

which yields

λ

νi
gi +

(1− λ)

µi
hi =

κi
εi
gi +

(1− κi)
εi

hi =
fi
εi
. (4.12)

From (4.11) we have

λ

ν
= max

(
λ

ν1
, . . . ,

λ

νm

)
= max

(
κ1

ε1
, . . . ,

κm
εm

)
and

1− λ
µ

= max

(
1− λ
µ1

, . . . ,
1− λ
µm

)
= max

(
1− κ1

ε1
, . . . ,

1− κm
εm

)
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so that the sub-additivity of the max function now yields the bound

λ

ν
+

1− λ
µ
≥ 1

ε
, (4.13)

where ε = min(ε1, . . . , εm). Combining (4.12) and (4.13) now gives us

m̂0 =
λ

ν
+

1− λ
µ

+

m∑
i=1

λgi(pi)

νi
+

(1− λ)hi(pi)

µi
≥ 1

ε
+

m∑
i=1

fi(pi)

εi
:= m̃0

with m̃0 ∈ F and from Proposition 4.3.1 we know that (IMC) holds true for m̃0 and therefore
also for m̂0.

The proof shows that F is “almost” convex in the sense that whenever equality holds in (4.13)
we have m̂0 = m̃0 ∈ F . If m̂1, m̂2 ∈ F0, i.e. each estimator uses only a single transformation
function then it is easy to see that equality holds in (4.13) which leads to the following result:

Proposition 4.3.3 The class of estimators F0 given by (4.7) is convex. In particular this implies
that for any m̂1, m̂2 ∈ F0 and λ ∈ [0, 1] the BH plug-in procedure (4.2) controls FDR at level α
for the estimator m̂0 = λm̂1 + (1− λ)m̂2.

4.4 Homogeneous estimators

In this section we focus on the class of homogeneous estimators F0 given by (4.7), i.e. on
estimators of the form

m̂0 = m̂0(p1, . . . , pm) =
1

ν

(
1 +

m∑
i=1

g(pi)

)
,

where g ∈ G and ν = ν(g) = Eg(U) > 0, with U ∼ U [0, 1]. As mentioned before, this class
includes the classical estimator m̂Storey

0 (4.3) and the new estimator m̂PC,new
0 (4.8), and also

gives the scientist freedom to define new estimators with proven plug-in FDR control thanks to
Proposition 4.3.1 There are many conceivable ways in which this can be done. As an ad hoc
example, we define a polynomial estimator of degree r ≥ 0 and thresholding parameter λ ∈ [0, 1)

by taking m̂0 as above in (4.7) with g(u) = gr,λ(u) = ur · 1{u > λ}, so that ν = 1−λr+1

r+1 . This
gives us

m̂Poly
0 (r, λ) =

r + 1

1− λr+1
+

r + 1

1− λr+1

m∑
i=1

pri · 1{pi > λ}. (4.14)

It is easily seen that the classical estimators m̂Storey
0 and m̂PC,new

0 are particular instances of
m̂Poly

0 (r, λ) with r = 0 for m̂Storey
0 and r = 1 and λ = 0 for m̂PC,new

0 . Taking r = 1 and λ > 0

yields a hybrid estimator which combines m̂Storey
0 and m̂PC,new

0 which has the potential to com-
bine the strengths of both methods. For all estimators m̂Poly

0 (r, λ) plug-in FDR control follows
immediately from Proposition 4.3.1. For illustrational purposes we effectively only use r as a
parameter and set the thresholding parameter to the classical value of λ = 1/2 throughout the
paper. These examples are primarily meant to illustrate the freedom and flexibility Proposi-
tion 4.3.1 allows for the class F0 and should not be interpreted as recommendations for optimal
choices. These examples are investigated further in the following section.
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Figure 4.1: MSE against signal strength µ ∈ [0, 3] with π0 = 0.6(left) and MSE against π0 ∈
[0.1, 0.9] with µ = 1.5(right)

4.4.1 Numerical results
Here we compare the performance of several estimators from the class F0 in a Gaussian one-
sided testing setting. We assume that we observe X1, . . . , Xm independent random variables
with Xi ∼ N (0, 1) for i ∈ H0 and Xi ∼ N (µ, 1) for i ∈ H1, with µ > 0, and we test H0,i : µ = 0
vs. H1,i : µ > 0. For a given signal strength µ > 0 under the alternative, closed-form expressions
for the expectation and variance of m̂0 are available, see Appendix C.2 for more details. Thus
we can numerically compare the mean squared error (MSE) of estimators from F0.

For this analysis, we fix m = 10 000 and first compare the MSE w.r.t. to the signal strength
µ of the alternatives with a fixed proportion of true nulls π0 = 0.6. Then, we compare the
MSE w.r.t. the proportion of true nulls π0 with a fixed signal strength µ = 1.5. The considered
estimators for this comparison are m̂Storey

0 (4.3), m̂PC,new
0 (4.8), m̂Poly

0 (1, 1/2), and m̂Poly
0 (2, 1/2)

(see (4.14) for both). The MSE is evaluated in terms of π0 for better readability and displayed
in Figure 4.1. The qualitative comparison between the estimators remains consistent across both
panels of Figure 4.1: m̂PC,new

0 has the poorest performance, characterized by the largest MSE,
followed by m̂Storey

0 . While the polynomial approach shows some benefits, the improvement is
not particularly remarkable except for small to moderate values of π0. For larger values of π0 or
µ, there are no noticeable differences in performance.

4.4.2 More details on the Pounds and Cheng estimator

While FDR control for m̂Storey
0 is a classical result following from Theorem 4.2.1 (Blanchard and

Roquain (2009); Benjamini et al. (2006)), much less is known about the validity of m̂PC,2006
0 as a
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plug-in estimator. Indeed, Pounds and Cheng (2006) introduced their estimator (4.4) primarily
to obtain a robust estimate of FDR. To the best of our knowlegde, the only related result on
plug-in FDR control was obtained by Zeisel et al. (2011), who defined the following modified
version of m̂PC,2006

0 :

m̂PC,ZZD
0 = C(m) ·min

[
m,max

(
s(m), 2 ·

m∑
i=1

pi

)]
, (4.15)

where the correction factors C(m) and s(m) are chosen in such a way so that (IMC) holds. How-
ever, determining these factors is non-trivial and requires extensive use of numerical integration
and approximations methods (see Supplement B in Zeisel et al. (2011) for further details) so
that no simple representation of C(m) and s(m) is available (for selected values of m, Table S1
in Zeisel et al. (2011) lists values for the correction factors).

By contrast, our new modification (4.8) is extremely simple and, as we show in Section 4.5,
can be adapted easily to e.g. discrete tests, thus confirming a conjecture in Pounds and Cheng
(2006). Its validity for plug-in FDR control follows directly from Proposition 4.3.1 and involves no
sophisticated asymptotic or numerical approximations. Supplementary material in Appendix C.3
shows that the two versions of the PC estimator behave more or less identically. Nevertheless, we
argue in favor of using m̂PC,new

0 since it is both conceptually and computationally much simpler
than m̂PC,ZZD

0 .

4.5 Adjusted estimators for discrete p-values

In this section we assume – additionally to mutual independence of the p-values – that the
null distribution functions F1, . . . , Fm are known. As a particular application we consider the
setting of discrete p-values (see Section 4.1.1 for more detailed references). The classical plug-
in estimators, like the Storey (2002) estimator defined in (4.3), were developed for uniformly
distributed p-values under the nulls, and can thus suffer of an inflated bias when computed
under (SuperUnif) assumption.

To illustrate the problem, we compare the bias of an arbitrary estimator m̂0 ∈ F0 under the
uniform setting with the bias under the super-uniform setting. In the classical uniform case,
considering marginally independent p-values pi ∼ X0 for i ∈ H0, and pi ∼ X1 for i ∈ H1, for
some variables X0, X1 defined on [0, 1], the bias is seen to be

Bias[m̂0] = E[m̂0]−m0 =
1

ν
(1 +m1E[g(X1)]). (4.16)

In contrast, under the super-uniform setting, still considering independent p-values under the
null and the alternative, the bias is

Bias[m̂0] =
1

ν
(1 +m1E[g(X1)]) +

1

ν
m0(E[g(X0)]− ν). (4.17)

Recall that ν = E[g(U)] with U ∼ U [0, 1], thus under super-uniformity E[g(X0)] ≥ ν (see the
characterization of the usual stochastic order in Appendix C.1), which shows that an additional
source of conservativeness is present in this case. In general, practitioners use classical estimators
without worrying about p-values distributions, ingenuously expecting the estimator to perform
according to the “uniform” bias (4.16) when in fact it often performs according to the “super-
uniform” bias (4.17). This motivates the need for a correction in the estimator that will aim at
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deflating (4.17).
Super-uniformity does not solely appear in the discrete setting, it also occurs e.g. when testing
composite nulls, however in the discrete setting additional information on the p-values c.d.f (as
defined by (4.5)) may be available and leveraged to correct the over-conservativeness. In this
section, we present two such approaches that incorporate the available knowledge of Fi – the
p-value c.d.f under the null – in the estimators. The standard way of defining p-values for
discrete tests leads to distribution functions that satisfy (Discrete) and (SuperUnif). As we
later introduce transformed p-values with transformed distribution, for clearer distinguishability
the c.d.f associated to these standard discrete p-values are denoted by F sd

1 , . . . , F sd
m (where the

upper-script “sd” denotes “standard discrete”).

4.5.1 Transformations of discrete p-values
In order to reduce the individual conservatism of p-values caused by super-uniformity, various
transformation of discrete p-values have been proposed, see e.g. Habiger (2015). Perhaps the
most popular transformation is the so-called mid-p-value. For the realization x of the random
variable X, let p(x) be the (realized) standard p-value. Now define the mid-p-value (Rubin-
Delanchy et al., 2019) q(x) given the observation x as

q(x) = p(x)− 1

2
P0(p(X) = p(x)), (4.18)

where P0 denotes the distribution of X under the null (for simplicity, we assume that such a
unique distribution exists). Transforming the p-value through (4.18) helps to mimic the behavior
of a uniform random variable in expectation. Indeed, we always have E[q(X)] = 1/2, see Berry
and Armitage (1995) for more details. However, the distribution of the mid-p-value is no longer
super-uniform but shrunk toward 0 as displayed in Figure 4.2. In what follows, we denote by
Fmid

1 , . . . , Fmid
m the distribution functions of the mid-p-values associated with the distribution

functions F sd
1 , . . . , F sd

m of the standard p-values. In Section 4.5.2 we show how the distribution
functions of standard discrete or mid-p-values can be used inm0-estimators introduced in Section
4.3, while preserving plug-in FDR control.

Another transformation to reduce the conservativeness of discrete p-values uses so-called
randomized p-values which are defined in our context by

r(x, u) = p(x)− u · P0(p(X) = p(x)), (4.19)

where u is the realization of a uniform random variable U ∼ U [0, 1], independent of X. Alter-
natively to the notation r(x, u), we will also use (with a slight abuse) r(p, u), where p = p(x) is
the standard p-value obtained from observation x. Randomized p-values and mid-p values are
related via the conditional expectation on the observations q(x) = EU [r(x, U)|X = x]. Ran-
domization leads to an (unconditional) uniform behavior, however at the cost of introducing an
additional source of randomness which makes its use controversial for decisions on individual
hypotheses, see e.g. Habiger and Pena (2011) for a discussion. We show in Section 4.5.3 that
for estimation purposes however, randomized p-values can be beneficial for obtaining an efficient
non-randomized estimator.

4.5.2 Adjusting the rescaling constants
The first approach for adjusting estimators to discrete p-values is tailored to estimators from the
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Figure 4.2: Distribution functions of a standard p-value and its associated mid-p-value.The
standard p-value has support {0.3, 0.55, 0.7, 0.9, 1} (orange rug plot), the c.d.f (orange solid line)
is super-uniform, i.e. below the uniform c.d.f (gray line). The support of the associated mid-
p-value {0.15, 0.465, 0.625, 0.8, 0.95} (green rug plot) is shifted to the left, but the probabilities
(given by the jumps in the green c.d.f) remain the same.

class F0 and adjusts the rescaling constant ν in m̂0. In fact, this approach is not limited to the
discrete setting, and can also be applied for arbitrary p-value distributions.

Proposition 4.5.1 Assume that p1, . . . , pm are mutually independent and the null distribution
functions F1, . . . , Fm are known. For any m̂0 ∈ F0 (4.7) with

m̂0(p1, . . . , pm) =
1

ν(g)

(
1 +

m∑
i=1

g(pi)

)
(4.20)

define the adjusted estimator

m̂adj
0 (p1, . . . , pm) =

1

min(νadj
1 , . . . , νadj

m )
+

m∑
i=1

g(pi)

νadj
i

(4.21)

where νadj
i = Epi∼Fi [g(pi)], is the expectation of the transformed p-value taken w.r.t. Fi. Then

the BH plug-in procedure (4.2) using m̂adj
0 controls FDR at level α.

Proof 4.5.1 Without loss of generality we assume that νadj
i > 0, otherwise the sum and mini-

mum in (4.21) is to be taken over the index set {i : νadj
i > 0}.

For any i ∈ {1, . . . ,m} define gi : [0, 1] → [0, 1] by gi(y) = g ◦ F−1
i (y) for y ∈ (0, 1], where

F−1
i (y) = inf{x ∈ R : Fi(x) ≥ y} is the generalized inverse of Fi, and set gi(0) = g(0). Since
g ∈ G and F−1

i are both nondecreasing, so is gi. For i ∈ H0, with U ∼ U [0, 1], we have
pi ∼ F−1

i (U) by Proposition 2 in Embrechts and Hofert (2013), so that gi(U) ∼ g(pi), which
implies that E[gi(U)] = Epi∼Fi [g(pi)] = νadj

i , so that (4.21) belongs to the class F .
Now let z1, . . . zm be independent random variables with zi ∼ U [0, 1] for i ∈ H0 and zi ∼ δ0 for
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i ∈ H1 (Dirac-Uniform configuration). Since gi(U) ∼ g(pi) for i ∈ H0, we have

m̃adj
0 (z1, . . . , zm) =

1

min(νadj
1 , . . . , νadj

m )
+
∑
i∈H0

gi(zi)

νadj
i

∼ 1

min(νadj
1 , . . . , νadj

m )
+
∑
i∈H0

g(pi)

νadj
i

≤ m̂adj
0 (p1, . . . , pm) (a.s.)

Since m̃adj
0 (z1, . . . , zm) ∈ F , by Proposition 4.3.1 (IMC) holds for m̃adj

0 (z1, . . . , zm), and since
m̃adj

0 (z1, . . . , zm) ≤ m̂adj
0 (p1, . . . , pm) (a.s.), (IMC) also holds for m̂adj

0 (p1, . . . , pm).

Following Proposition 4.5.1, we define the discrete-uniform estimator using (4.21) with stan-
dard discrete p-values p1, . . . , pm and their distribution functions F sd

1 , . . . , F sd
m

m̂du
0 (p1, . . . , pm) =

1

min(νdu1 , . . . , νdum )
+

m∑
i=1

g(pi)

νdui
, (4.22)

where νdui = Epi∼F sd
i

[g(pi)].

Corollary 4.5.1 Assume that p1, . . . , pm are mutually independent and (SuperUnif) holds with
null distribution functions F sd

1 , . . . , F sd
m that are known. Then the BH plug-in procedure (4.2)

using m̂du
0 as in (4.22)controls FDR at level α. Moreover m̂du

0 ≤ m̂0 (a.s.), where m̂0 is the base
non-adjusted estimator (4.20).

The last statement of the corollary shows that for standard discrete p-values the estimator m̂du
0 is

guaranteed to perform better than m̂0. This follows from the fact that νdu1 , . . . , νdum ≥ ν because
g is non-decreasing and (SuperUnif) holds (see Appendix C.1).

For classical estimators, the adjusted rescaling constants can be computed easily, using

• νdu-Storeyi = 1− F sd
i (λ);

• νdu-PCi =
∑
x∈Ai x · P (pi = x), where Ai denotes the support of F sd

i .

Similarly to (4.22), we define a mid p-value estimator using (4.21) with mid-p-values q1, . . . , qm
and their distribution functions Fmid

1 , . . . , Fmid
m

m̂mid
0 (q1, . . . , qm) =

1

min(νmid
1 , . . . , νmid

m )
+

m∑
i=1

g(qi)

νmid
i

(4.23)

where νmid
i = Eqi∼Fmid

i
[g(qi)] is the expectation taken under the null using the mid p-value

distribution function Fmid
i . For m̂Storey

0 we have νmid-Storey
i = 1 − Fmid

i (λ) ≤ 1 − F sd
i (λ) =

νdu-Storeyi and g(qi) = 1{qi > λ} ≤ 1{pi > λ} = g(pi) so that m̂mid
0 can be smaller or larger

than m̂du
0 , depending on the specific constellation. In the case of the PC estimator we have

g(x) = x and since Eqi = 1/2 for any mid-p-value (see Berry and Armitage (1995)) we have
νmid

1 = . . . = νmid
m = 1/2 so that in this case the mid-p estimator has a particularly simple

representation. Combining this with the fact that qi ≤ pi (a.s.) gives us the following result.

Corollary 4.5.2 Assume that p1, . . . , pm are mutually independent and super-uniform under the
null (i.e. (SuperUnif) holds), and let q1, . . . , qm denote the corresponding mid-p-values. Then
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the mid-p estimator of m̂PC,new
0 is given by

m̂mid-PC
0 (q1, . . . , qm) = 2 + 2 ·

m∑
i=1

qi

and the BH plug-in procedure (4.2) using m̂mid-PC
0 (q1, . . . , qm) controls FDR at level α. Moreover,

m̂mid-PC
0 ≤ m̂0 (a.s.), where m̂0 is the base non-adjusted estimator (4.20).

This result implies that for the PC estimator with discrete data we can simply use 2+2·
∑m
i=1 qi

instead of the more conservative 2+2 ·
∑m
i=1 pi estimator without losing plug-in FDR control. We

point out that the mid-p-values are used exclusively for estimating m0 in the plug-in procedure
defined by (4.2) while the (ordered) standard discrete p-values p(k) are used in the final decision
step.

4.5.3 A randomization approach
Here we describe an approach related to Dickhaus et al. (2012) who argue for using randomization
methods in estimating m0 on discrete data. For any estimator m̂0, not necessarily belonging to
F0 define the associated expected randomized estimator as

m̂rand
0 (p1, . . . , pm) =

[
E(U1,...,Um)

(
1

m̂0(r(p1, U1), . . . , r(pm, Um))

)]−1

(4.24)

where U1, . . . , Um ∼ U [0, 1] denote i.i.d uniform random variables independent of (p1, . . . , pm).
Thus, for fixed (p1, . . . , pm) this estimator is obtained by taking the expectation over the ran-
domized p-values associated with (p1, . . . , pm). In most cases (4.24) is analytically intractable,
we therefore use Monte-Carlo approximation of m̂rand

0 obtained by averaging a large number of
simulations of m̃0(r(p1, U1), . . . , r(pm, Um)) (the vector (U1, . . . , Um) is simulated many times,
while (p1, . . . , pm) is kept fixed). Again, this approach comes with guaranteed FDR plug-in
control.

Corollary 4.5.3 Assume that p1, . . . , pm are mutually independent and super-uniform under
the null (i.e. (SuperUnif) holds) and let m̂0 satisfy the conditions of Theorem 4.2.1. Then the
BH plug-in procedure (4.2) using m̂rand

0 (p1, . . . , pm) defined by (4.24) controls FDR at level α.
Moreover m̂rand

0 ≤ m̂0 (a.s.).

Proof 4.5.2 The proof uses Theorem 4.2.1. First, we show that m̂rand
0 (p1, . . . , pm) is coordi-

natewise non-decreasing. For fixed (u1, . . . , um) ∈ [0, 1]m each (realized) randomized p-value ri =
r(pi, ui) is non-decreasing in pi. Since m̂0 ∈ F is coordinatewise non-decreasing in (p1, . . . , pm),
the function 1/m̂0(r(·, u1), . . . , r(·, um)) is coordinatewise decreasing for all (u1, . . . , um) ∈ [0, 1]m

and so is its expectation which implies that m̂rand
0 is coordinatewise non-decreasing. To establish

(IMC), we denote for h ∈ H0 by r0,h the set of randomized p-values (r1, . . . , rm), where rh has
been replaced by 0. By the definition of m̂rand

0 we have

E(p1,...,pm)

[
1

m̂rand
0 (p0,h)

]
= E(p1,...,pm)

[
E(U1,...,Um)

1

m̂0(r0,h)

]
= E(r1,...,rm)

[
1

m̂0(r0,h)

]
.

where the second equality follows from the fact that for super-uniform p-value ph = 0, the associ-
ated randomized p-value r(ph, u) = 0 (a.s) by Definition (4.19). Since the (r1, . . . , rm) are mutu-
ally independent and uniform under the null and m̂0 ∈ F , the bound (IMC) for m̂0(r0,h) now fol-
lows since m̂0 satisfies the conditions of Theorem 4.2.1. Therefore, the r.h.s. of the last equation
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can be bounded by 1/m0 and plug-in FDR control for m̂rand
0 now follows from Theorem 4.2.1. To

see that the last statement of the corollary holds true, observe that since m̂0 is coordinatewise non-
decreasing and r(pi, Ui) ≤ r(pi, 0) = pi we have m̂0(r(p1, U1), . . . , r(pm, Um)) ≤ m̂0(p1, . . . , pm)
and therefore the r.h.s. of (4.24) is bounded by m̂0(p1, . . . , pm) (a.s.).

Dickhaus et al. (2012) argue for using randomized p-values in (essentially) Storey’s estimator,
i.e. applying m̂Storey

0 to (r1, . . . , rm) instead of (p1, . . . , pm) which yields a random estimate that
should provide a better estimate for m0. They show that plugging this estimator into the
Bonferroni procedure yields asymptotic control of the Familywise Error Rate (FWER) under
certain assumptions. They also point out that if fully reproducible results are desired it may
be more appropriate to work with the conditional expectation w.r.t. randomization, i.e. using
E(U1,...,Um)

(
m̂Storey

0 (r1, . . . , rm)
)
. Corollary 4.5.3 shows that we can obtain similar guarantees

w.r.t. to plug-in FDR control in a finite-sample setting for any estimator m̂0 satisfying the
conditions of Theorem 4.2.1 and in particular for m̂0 ∈ F0 by using conditional expectation
w.r.t. randomization. The slightly complicated form of (4.24) is a natural consequence of
Theorem 4.2.1, but if the variance of m̂0(r(p1, U1), . . . , r(pm, Um)) w.r.t. U1, . . . , Um is small
we have the approximation m̂rand

0 (p1, . . . , pm) ≈ E(U1,...,Um)m̂0(r(p1, U1), . . . , r(pm, Um)).

4.5.4 Simulation results
In this section, we analyze how the discrete adjustments can improve the base estimators on
simulated data. More specifically, we follow Döhler et al. (2018) by simulating a two-sample
problem in which a vector of m = 500 independent binary responses is observed for N = 25
subjects in both groups. The goal is to test the m null hypotheses H0,i: ’p1i = p2i’, i = 1, ...,m
where p1i and p2i are the success probabilities for the ith binary response in group A and B
respectively. Thus, for each hypothesis i, the data can be summarized by a 2 × 2 contingency
table, and we use (two-sided) Fisher’s exact tests (FETs) for testing H0i. The m hypotheses are
split in three groups of size m1, m2, and m3 such that m = m1 + m2 + m3. Then, the binary
responses are generated as i.i.d Bernoulli of probability 0.01 (Bin(1, 0.01)) at m1 positions for
both groups, i.i.d Bin(1, 0.10) at m2 positions for both groups, and i.i.d Bin(1, 0.10) at m3

positions for one group and i.i.d Bin(1, p3) at m3 positions for the other group. Thus, null
hypotheses are true for m1 + m2 positions, while they are false for m3 positions (set H1). We
interpret p3 as the strength of the signal and set it to 0.4, while π1 = m3

m , corresponds to the
proportion of signal. Also, m1 and m2 are both taken equal to m−m3

2 .
We first compare the base estimators m̂Storey

0 (4.3), m̂PC,new
0 (4.8), and m̂Poly

0 (2, 1/2) (4.14)
with their standard discrete rescaled versions. Figure 4.3 displays the estimation results for a
grid of true π0 ∈ {0.1, . . . , 0.9}. We can see that incorporating discreteness leads to considerable
improvements for all estimators over the entire range of π0 values. This is particularly relevant
for large values of π0 where the base estimators may lead to a strong deterioration in the power
of the plug-in BH procedure. On another note, among the base estimators we can see that
m̂Poly

0 (2, 1/2) performs poorly compared to the results of Section 4.4.1. This seems plausible
since a large portion of p-values are equal to 1 in the discrete setting in contrast to the Gaussian
setting. For these p-values, the contribution in the m̂Poly

0 (2, 1/2) estimator is equal to the constant
ν = 3

1−1/23 = 24
7 which is much larger than the corresponding contribution of ν = 2 in the Storey

estimator.

In a second step, we compare the different discrete adjustments m̂du
0 as in (4.22), m̂mid

0 as in
(4.23), and m̂rand

0 as in (4.24) in Figure 4.4, where we display the estimation results for three
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Figure 4.3: Comparison between base estimators m̂Storey
0 , m̂PC,new

0 and m̂Poly
0 (2, 1/2) and their

standard discrete rescaled versions on simulated data.

values of true π0 ∈ {0.2, 0.5, 0.7}. We can see that there are no relevant differences between
the different adjustments. Therefore, there is no strong reason to advocate a specific type of
adjustment since they yield similar outcomes.

Figure 4.4: Comparison between discrete adjustments m̂du
0 , m̂mid

0 and m̂rand
0 on simulated data.

4.5.5 Real data analysis
Finally, we compare the performance of base and discrete estimators on three different datasets.
The first dataset consists of data provided by the International Mice Phenotyping Consortium
(IMPC) (Karp et al., 2017), which coordinates studies on the genotype influence on mouse
phenotype. This dataset includes, for each of them = 266952 studied genes, the counts of normal
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and abnormal phenotypes thus providing multiple two by two contingency tables, which can be
analysed using FETs. Then we analyze the methylation dataset for cytosines of Arabidopsis in
Lister et al. (2008) which is part of the R-package fdrDiscreteNull of Chen and Doerge (2015).
This dataset contains m = 3525 counts for a biological entity under two different biological
conditions or treatments also analyzed using FETs. Finally, the third dataset, provided by the
Regulatory Agency in the United Kingdom, includes adverse drug reactions due to medicines
and healthcare products. It contains the number of reported cases of amnesia as well as the total
number of adverse events reported for each of the m = 2446 drugs in the database. For more
details we refer to Heller and Gur (2011) and to the accompanying R-package discreteMTP
of Heller et al. (2012), which also contains the data. Heller and Gur (2011) investigate the
association between reports of amnesia and suspected drugs by performing for each drug (one-
sided) FETs.

From the results in Table 4.1 we can see that taking discreteness into account is always bene-
ficial, regardless of the adjustment used. Depending on the type of discreteness and the amount
of signal contained in the data, adjusting for discreteness can provide a great improvement in
some cases. Indeed, as the example of the IMPC data shows, base estimators may not be able
to recognize the presence of any alternatives. However, the discrete estimators clearly suggest
that a considerable amount of alternatives is present.

Table 4.1: π0-estimates for base estimators and adjusted discrete estimators on three different
datasets containing discrete data.

Dataset

Adjustment Estimator IMPC Arabidopsis Pharmacovigilance

standard (none) Storey 1.26 0.67 1.79
PC 1.26 0.73 1.79
Poly(2, 1/2) 2.16 0.75 2.97

rescaled (du) Storey 0.63 0.59 1.05
PC 0.63 0.64 1.04
Poly(2, 1/2) 0.63 0.57 1.10

rescaled (mid) Storey 0.63 0.63 1.03
PC 0.63 0.64 1.05
Poly(2, 1/2) 0.63 0.58 1.11

randomized Storey 0.63 0.58 1.08
PC 0.63 0.64 1.06
Poly(2, 1/2) 0.63 0.56 1.14
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4.6 Discussion

In this paper we introduce a unified class ofm0-estimators with mathematical guarantees on plug-
in FDR control in a classical setting. We also describe some general approaches for adjusting
m0-estimators constructed for continuous p-values to discrete p-values. While we show that
these results are useful both from a methodological viewpoint and for practical purposes, there
a numerous possibilities for further investigations, some of which we describe now.

While we focus on FDR control in this paper, it is clear, that our new estimators can also be
used for FDR estimation, see Storey (2002). For the discrete estimators from Section 4.5 that
are uniformly better than their classical counterparts, this implies that the corresponding FDR
estimators are uniformly better es well.

In Section 4.4, we describe the performance of various polynomial estimators in a one-sided
Gaussian testing framework with the aim of illustrating the flexibility of our Proposition 4.3.1
on plug-in FDR control. The numerical results in Section 4.4.1 show that m̂Poly

0 (2, 1/2) performs
uniformly better in terms of MSE than the other estimators in this specific framework. In a
second step, it might be interesting to study whether optimal estimators can be derived, either
within the whole class F0 or perhaps within some sub-class like polynomial estimators. This
way, it may eventually be possible to obtain more efficient estimators in practice, or at least give
the user some guidance for choosing estimators from the class F0.

We would also like to point out some connections to the work of Heesen and Janssen (2016),
who split the unit interval into an estimation region on which an estimator of m0 is constructed
and a rejection region on which the BH procedure is run. Thus these estimators do not use
all available p-values, in contrast to our approach. Heesen and Janssen (2016) derive a general
sufficient criterion, similar to Theorem 4.2.1, for finite sample plug-in FDR control which they
apply to Storey-type estimators and histogram-type estimators (see MacDonald et al. (2019)).
In contrast to our approach, the transformation function g applied to p-values need not be
monotone, however it is unclear whether e.g. smooth functions fit into this framework. Their
approach also accommodates “dynamization”, which allows data-dependent tuning of parameters,
see MacDonald et al. (2019). We may wonder if this approach can be used for the estimators of
our class, but as this question exceeds the scope of this paper, we leave it for future research.

While we use polynomial estimators as simple examples that include both the classical Storey
and Pounds and Cheng estimators, other choices are conceivable. Taking, for instance, certain
kernel-type transformation functions would lead to estimators that are advantageous from an
asymptotic viewpoint, see Neuvial (2013). We leave this topic for future research.

In Section 4.5 we illustrate how information on the null distribution functions of discrete
p-values can be used to obtain more efficient m0-estimators. This information can be seen as
a special case of auxiliary covariates, for which it is well-known that their incorporation into
multiple testing procedures e.g. by weighting, can be highly beneficial (see Ignatiadis et al.
(2016); Durand (2019)). We would like to mention that our methods for m0-estimation are not
limited to the special case of discrete p-values but should be able to acomodate these types
of heterogeneity as well. Thus, they might also be useful in the settings described above for
obtaining more efficient m0-estimators.

While we assume independence of the p-values throughout this paper, it is well-known that
dependence may adversely affect the performance ofm0-estimators or may require re-adjustments
of tuning parameters like λ in m̂Storey

0 (see e.g. Blanchard and Roquain (2009)). Thus, it might be
interesting to investigate the behaviour of our new estimators under various types of dependency.

Constructing multiple testing procedures for discrete data that provide finite sample plug-
in FDR control is challenging. In this paper we make some progress by obtaining improved
discrete estimators for m0. While using these discrete estimators in the plug-in BH procedure
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provide more power than using classical estimators (based on uniformly distributed p-values
under the null), it is still not ideal because the discreteness is ignored in the rejection stage of
the procedure. Döhler et al. (2018) propose discrete variants of the standard (i.e. non plug-in)
BH procedure. They also sketch a possible plug-in method based on combining this procedure
with estimators of m0, but caution that it comes without mathematical guarantees. Thus, as
MacDonald et al. (2019) pointed out, it still remains an open problem to develop procedures
that integrate discreteness of the data in both the estimation of m0 and the rejection of p-values.
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Conclusion and perspectives

The work presented in this manuscript focuses on improving state-of-the-art MT methods in
different contexts involving specific types of data structures. In each of the three chapters, we
focus on three types of MT methods revolving around online procedures, confidence bounds,
and estimation. The improvement of these methods can be described in terms of power gain
(Chapters 2 and 4), asymptotic consistency (Chapter 3), and closure of theoretical gaps (Chap-
ter 4). To achieve these improvements we sometimes leveraged information available in the
setting of interest or specific mathematical tools: in Chapters 2 and 4 we used the available
knowledge on the discrete p-value distribution to compensate the power loss when dealing with
discrete p-values. In Chapter 2 this allowed to improve online testing procedures for discrete
data and to handle online weighting. This is achieved by incorporating a quantity called the
super-uniformity reward, which roughly speaking, represents the amount of wasted testing level
due to the super-uniformity of the discrete p-values. In Chapter 3, we used existing and novel
concentration inequalities to derive asymptotically consistent FDP bounds. This step further
narrows the gap between FDR control and FDP confidence bounds, as consistent bounds offer
an asymptotic control at level α of the FDP with high probability. These improvements allow to
extend classical MT methods to different contexts that are ubiquitous in real-life applications.

Nevertheless, the current work has also limitations. First, the presented results mostly hold
under the assumption of independence between the p-values, which is quite unrealistic in real
life. Recently, Wang and Ramdas (2022) introduced the eBH procedure which corresponds to the
BH procedure using e-values. An E-value is any statistic for which the expectation is less than 1
under the null hypothesis. For instance, in a parametric setting (where we have a specific value
for the tested parameter under the alternative), an e-value can be set as the likelihood ratio. E-
values are very appealing since they allows to seamlessly handle dependencies and sequentiality.
Indeed, the definition based on the expectation allows to easily verify the FDR control for the
eBH under any dependency assumption between the p-values, see Wang and Ramdas (2022) for
more details. Additionally, many efforts have been made in the last years to transfer p-value
based results into e-value based results, see e.g. the works of Xu et al. (2022) on e-value based
FDP bounds or Ignatiadis et al. (2022) on e-value weighting. Further investigations could be
undertaken to propose a closed form formula of e-values in the discrete setting.

Second, power results can be desirable to quantify rigorously the amount of power improve-
ment and help assess whether there is further room for enhancement, particularly in the online
and discrete settings. In the canonical setting, theoretical analyses of power have been conducted
by Donoho and Jin (2004) and Abraham et al. (2021). They investigate the signal strength, de-
riving boundaries between regimes where achieving good power while maintaining low risk is
possible and where no detection is possible without causing high risk. These kinds of studies
could be relevant in the online setting but might be much more demanding as the results can-
not depend on the unknown number of tests m. Additionally, since the online setting models
a context with an ever-growing number of hypotheses tested, an exhaustive model might need

93



94 Conclusion and perspectives

to encompass a dynamic signal trend over time. Nonetheless, some power results have been
presented in the online literature. For instance, Tian and Ramdas (2021) conducted a power
comparison for online FWER controlling procedures, while Javanmard and Montanari (2018)
proposed optimal spending sequence {γt}t≥1 for the LORD procedure in the context of Gaussian
mean testing. Extending these investigations to the online discrete setting could be valuable for
determining the optimal spending and investing sequences {γt}t≥1, {γ′t}t≥1 or quantifying the
power gains of rewarded procedures. However, obtaining power results in the discrete context
is challenging, and as of now, there are no such available results. This is because conducting a
power study in a general discrete context (not necessarily limited to the context of the FET) re-
quires modeling the discreteness of the p-values, and there are currently no established guidelines
on how to model this mechanism. One potential option might involve using a Poisson process to
generate jumps for a function that acts as a proxy mimicking the discrete Fi in different regimes.
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A.1.1 Proofs for online FWER control
We start by proving Theorem 2.3.3 and then deduce Theorems 2.3.1 and 2.3.2.
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Proof A.1.1 (Proof of Theorem 2.3.3) First, let us show that for any critical values (αt, t ≥
1), a sufficient condition for FWER control under (2.2) is given by

αT +

T−1∑
t=1

1{pt(X) ≥ λ}Ft(αt) ≤ (1− λ)α (a.s.) (A.1)

if either (2.3) or if (αt, t ≥ 1) are deterministic for all T ≥ 1. This comes from Markov’s
inequality combined with Lemma A.1.1:

FWER(T,A, P ) ≤ EX∼P

( T∑
t=1

1{t ∈ H0(P ), pt ≤ αt}
)

≤ (1− λ)−1 E

(
T∑
t=1

1{pt(X) ≥ λ}Ft(αt)

)

≤ (1− λ)−1 E

(
αT +

T−1∑
t=1

1{pt(X) ≥ λ}Ft(αt)

)
,

which gives the announced sufficient condition. Now, we obtain statement (i) of the theorem by
verifying the above criterion (A.1) for α0

t using the (crude) bound Ft(x) ≤ x and assumption
(2.19). Next, we obtain statement (ii) of the theorem by verifying the above criterion (A.1) for
αt. This is done by reducing this to a statement on α0

t via Lemma A.1.2. More precisely, with
aT =

∑T
t=1 γ

′
t, we have

αT +

T−1∑
t=1

1{pt(X) ≥ λ}Ft(αt) ≤ αT +

T−1∑
t=1

1{pt ≥ λ} [(1− aT−t)αt + aT−tFt(αt)]

= α0
T +

T−1∑
t=1

1{pt ≥ λ}α0
t ≤ α,

where the equality above is true provided that the following recursion holds for all T ≥ 1,

αT = α0
T +

T−1∑
t=1

1{pt ≥ λ}α0
t −

T−1∑
t=1

1{pt ≥ λ} [(1− aT−t)αt + aT−tFt(αt)] .

This is true by Lemma A.1.2 because of the expression (2.20) of αt. This concludes the proof.

Proof A.1.2 (Proof of Theorems 2.3.1 and 2.3.2) Theorems 2.3.1 and 2.3.2 are corollar-
ies of Theorem 2.3.3, by considering A0 = AOB (λ = 0) and A0 = AAOB, respectively. Indeed,
checking (2.19) is straightforward for AOB from the spending sequence definition or comes from
Lemma A.1.3 for AAOB.

A.1.2 Proofs for online mFDR control

The global proof strategy is similar to the one used for FWER: we start by proving Theorem 2.4.3
and then deduce Theorem 2.4.1 and Theorem 2.4.2.

Proof A.1.3 (Proof of Theorem 2.4.3) First, we establish that mFDR control is provided
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under (2.2) and (2.3) for any procedure A = (αt, t ≥ 1) if

αT +
∑

1≤t≤T−1,
pt≥λ

Ft(αt) ≤ (1− λ)α (1 ∨R(T )), (a.s.). (A.2)

Indeed, by Lemma A.1.1, we have

EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αt}
)
≤ (1− λ)−1 E

(
T∑
t=1

1{pt(X) ≥ λ}Ft(αt)

)
≤ αE(1 ∨R(T )),

by using (A.2), which is exactly the desired mFDR control. Now, statement (i) holds because
(A.2) holds for (α0

t , t ≥ 1) from (2.30) and (2.2). Finally, we establish statement (ii). By (2.30)
and (2.2), condition (A.2) holds for (αt, t ≥ 1) if for all T ≥ 1,

αT +

T−1∑
t=1

1{pt(X) ≥ λ} [(1− aT−t)αt + aT−tFt(αt)] = α0
T +

∑
pt≥λ,1≤t≤T−1

α0
t ,

where aT =
∑T
t=1 γ

′
t. Now the last display holds true by Lemma A.1.2 because of (2.20), which

concludes the proof.

Proof A.1.4 (Proof of Theorems 2.4.1 and 2.4.2) Theorem 2.4.1 and Theorem 2.4.2 can
be derived from Theorem 2.4.3 for A0 = ALORD (using λ = 0) and A0 = AALORD, respectively,
by checking (2.30) in both cases. First, for ALORD, we have

T∑
t=1

αLORD
t =

T∑
t=1

W0γt + (α−W0)γt−τ1 + α
∑
j≥2

γt−τj


= W0

T∑
t=1

γt + (α−W0)

T∑
t=1

γt−τ1 + α
∑
j≥2

1{T − τj ≥ 1}
T∑
t=1

γt−τj

≤ α(1 + 0 ∨ (R(T − 1)− 1)) ≤ α(1 ∨R(T )), (A.3)

because τj ≤ T − 1 is equivalent to R(T − 1) ≥ j by definition. Second, for AALORD, we proceed
similarly with the help of Lemma A.1.3: by definition (2.28), we have

(1− λ)−1

αALORD
T +

∑
1≤t≤T−1,
pt≥λ

αALORD
t


= W0

γT0(T ) +
∑

1≤t≤T−1,
pt≥λ

γT0(t)

+ (α−W0)

γT1(T ) +
∑

1≤t≤T−1,
pt≥λ

γT1(t)


+ α

∑
j≥2

1{T ≥ τj + 1}

γTj(T ) +
∑

1≤t≤T−1,
pt≥λ

γTj(t)

 .
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Finally, by using (A.6) and (A.7), the latter is equal to

W0

T0(T )∑
t=1

γt + (α−W0)

T1(T )∑
t=1

γt + α
∑
j≥2

1{T ≥ τj + 1}
Tj(T )∑
t=1

γt

≤W0 + α−W0 + α
∑
j≥2

1{T ≥ τj + 1} = α(1 + 0 ∨ (R(T − 1)− 1)) ≤ α (1 ∨R(T )),

because T ≥ τj + 1 if and only if R(T − 1) ≥ j.

A.1.3 Auxiliary lemmas

The following lemma provides a tool for controlling both online FWER and mFDR.

Lemma A.1.1 For any procedure A = (αt, t ≥ 1), we have for all λ ∈ [0, 1),

EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αt}
)
≤ (1− λ)−1 E

(
T∑
t=1

1{pt(X) ≥ λ}Ft(αt)

)
, (A.4)

provided that (2.2) holds and if either (2.3) holds or if the critical values (αt, t ≥ 1) are deter-
ministic.

Proof A.1.5 Recall αt is either deterministic or Ft−1-measurable (in which case it is indepen-
dent of pt(X) under (2.3)). Therefore, under the conditions of the lemma, we have in any case:
for all t ∈ H0, both

E

(
1{pt(X) > λ}

1− λ

∣∣∣∣αt) ≥ 1, P (pt(X) ≤ αt | αt) ≤ Ft(αt).

This entails

EX∼P

( T∑
t=1

1{t ∈ H0, pt ≤ αt}
)

=

T∑
t=1

1{t ∈ H0}E (P(pt(X) ≤ αt | αt))

≤
T∑
t=1

1{t ∈ H0}E (Ft(αt))

≤
T∑
t=1

1{t ∈ H0}E
(
Ft(αt)E

(
1{pt(X) ≥ λ}

1− λ
| αt
))

≤ (1− λ)−1 E

(
T∑
t=1

1{pt(X) ≥ λ}Ft(αt)

)
.

The following representation lemma is the key tool for building the new rewarded critical values.

Lemma A.1.2 Let (α0
t , t ≥ 1) be any nonnegative sequence. Let (α̃t, t ≥ 1) be the sequence

defined by the recursive relation

α̃T = α0
T +

T−1∑
t=1

1{pt ≥ λ}α0
t −

T−1∑
t=1

1{pt ≥ λ} [(1− aT−t)α̃t + aT−tFt(α̃t)] , T ≥ 1, (A.5)
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where aT =
∑T
t=1 γ

′
t, T ≥ 1 for any real values γ′t, pt, λ and functions Ft. Let (ᾱt, t ≥ 1) be the

sequence defined by the recursive relation

ᾱT = α0
T +

∑
1≤t≤T−1
pt≥λ

γ′T−t(ᾱt − Ft(ᾱt)) + 1{pT−1 < λ}(ᾱT−1 − α0
T−1), T ≥ 1.

Then we have α̃t = ᾱt for all t ≥ 1. Moreover, ᾱt ≥ ᾱ0
t for all t ≥ 1 under (2.2). In particular,

these critical values are nonnegative.

Proof A.1.6 Clearly, α̃1 = α0
1 = ᾱ1 so the result is satisfied for T = 1. For T ≥ 2, by using

(A.5) for α̃T and α̃T−1, we have

α̃T − α̃T−1 = α0
T − α0

T−1 + 1{pT−1 ≥ λ}α0
T−1

− 1{pT−1 ≥ λ} [(1− a1)α̃T−1 + a1FT−1(α̃T−1)]

+

T−2∑
t=1

1{pt ≥ λ} [(aT−t − aT−t−1)α̃t − (aT−t − aT−t−1)Ft(α̃t)] .

Hence, by using α̃T−1 = α̃T−11{pT−1 < λ}+ α̃T−11{pT−1 ≥ λ}, we obtain

α̃T = α0
T − 1{pT−1 < λ}α0

T−1 + α̃T−11{pT−1 < λ}
+ 1{pT−1 ≥ λ} [γ′1α̃T−1 − γ′1FT−1(α̃T−1)]

+

T−2∑
t=1

1{pt ≥ λ}
[
γ′T−tα̃t − γ′T−tFt(α̃t)

]
,

because γ′1 = a1, and we recognize the expression given in the lemma.
Let us finally prove that ᾱT ≥ ᾱ0

T for all T ≥ 1. This is true for ᾱ1 because ᾱ1 = α0
1. Now,

if ᾱ1 ≥ α0
1, . . . , ᾱT−1 ≥ α0

T−1 then we also have

ᾱT = α0
T +

∑
1≤t≤T−1
pt≥λ

γ′T−t(ᾱt − Ft(ᾱt)) + 1{pT−1 < λ}(ᾱT−1 − α0
T−1) ≥ α0

T ,

because ᾱt ≥ Ft(ᾱt) by (2.2). This finishes the proof.

We now establish a result for the functionals T (·) and Tj(·), j ≥ 1, which are used by the
adaptive procedures AAOB and AALORD, respectively.

Lemma A.1.3 Consider the functional T (·) defined by (2.16) for some realization of the p-
values and some λ ∈ [0, 1). Then for any sequence (γt)t≥1 and for any T ≥ 1, we have

T∑
t=1

1{pt ≥ λ}γT (t) =

T (T+1)−1∑
t=1

γt. (A.6)

In addition, for any j ≥ 1, consider the τj defined by (B.14) and the functional Tj(·) defined by
(2.26). Then for all T ≥ τj + 1,

∑
1≤t≤T
pt≥λ

γTj(t) =

Tj(T+1)−1∑
t=1

γt. (A.7)
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Proof A.1.7 Let us first prove (A.6). Since T (t + 1) = T (t) + 1 when pt ≥ λ from definition
(2.16), we can write

T∑
t=1

1{pt ≥ λ}γT (t) =

T∑
t=1

1{pt ≥ λ}γT (t+1)−1 =

T+1∑
t=2

1{pt−1 ≥ λ}γT (t)−1.

Additionally, it is clear that T (·) is a bijection mapping {1, 2 ≤ t ≤ T + 1 : pt−1 ≥ λ} into
{1, 2, . . . , T (T + 1)}. Hence, the latter sum can be rewritten as

∑T (T+1)
t=2 γt−1 =

∑T (T+1)−1
t=1 γt

which provides (A.6).
Second, for proving (A.7), the crucial point is that according to the definition of Tj(T ) (2.26),

the functional Tj : {τj + 1, . . .} → {1, . . .} is a bijection from {τj + 1}∪ {t ∈ {τj + 2, . . . , T + 1} :
pt−1 ≥ λ} to {1, . . . , Tj(T + 1)}, for any j ≥ 1 and T ≥ τj + 1. In particular, this entails∑

pt≥λ,1≤t≤T

γTj(t) =
∑

pt≥λ,τj+1≤t≤T

γTj(t) =
∑

pt≥λ,τj+1≤t≤T

γTj(t+1)−1

=
∑

pt−1≥λ,τj+2≤t≤T+1

γTj(t)−1 =

Tj(T+1)∑
t=2

γt−1 =

Tj(T+1)−1∑
t=1

γt.

This proves (A.7).

A.2 Delayed spending approach

In this section we present another way of incorporating super-uniformity into OMT which we
refer to as delayed spending (in the sequel abbreviated as DS). We are grateful to Aaditya Ramdas
for this suggestion.

The new procedure is introduced in Section A.2.1, while we highlight some mathematical and
practical differences with our approach in Sections A.2.2 and A.2.3. In order to make the new
procedure more efficient we also present a hybrid version in Section A.2.4. For simplicity, we
restrict ourselves to FWER controlling procedures for discrete data throughout this section.

A.2.1 Definition

Let us start with the critical value α1 = αγ1. While the OB procedure would choose α2 = αγ2,
the idea is that if the super-uniformity is strong enough to ensure F1(αγ1) + F2(αγ1) ≤ αγ1,
we can still use α2 = αγ1 in the second round. This process can be continued until F1(αγ1) +
· · · + Fb1+1(αγ1) > αγ1, in which case we switch to αb1 = αγ2, and so on. This way, we can
incorporate the super-uniformity directly by ’delaying’ the γ sequence.

More formally, consider the setting of Section 4.2, where a null bounding family F = {Ft, t ≥
1} satisfying (2.2) is at hand. The above strategy reads:

αDS
t = αγC(t), where C(t) = min{j ≥ 1 : bj ≥ t}, t ≥ 1; (A.8)

bj = max
{
T ≥ bj−1 + 1 :

T∑
t=bj−1+1

Ft(αγj) ≤ αγj
}
, j ≥ 1, (A.9)

(with the convention b0 = 0 and bj = +∞ if the set in (A.9) is empty), so that j = C(t) for
bj−1 + 1 ≤ t ≤ bj . Thus, the DS method processes each sub-budget αγj one at a time, until the
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Table A.1: Number of discoveries for SURE online Bonferroni (2.15) (bandwidth h = 10) and
the DS approach (A.8). Here C(30 000) = 5083 as defined in (A.8). These numbers are obtained
by running the procedures on the first 30 000 genes for male (second row) and female (third row)
mice in the IMPC data.

Procedures OB ρOB Delayed
# discoveries (male) 229 377 293

# discoveries (female) 267 481 355

stopping rule in (A.9) is met and the transition to the next sub-budget αγj+1 is made. Since
C(t) ≤ t we can interpret αDS

t = αγC(t) as a ’slowed-down’ variant of the original OB procedure.
The procedure (A.8) controls the online FWER under (2.2) because by (2.13), a sufficient

condition is given by
∑T
t=1 Ft(αt) ≤ α, T ≥ 1, and we indeed have

∑
t≥1

Ft(α
DS
t ) ≤

∑
j≥1

bj∑
t=bj−1+1

Ft(αγj) ≤
∑
j≥1

αγj ≤ α,

by definition of the bj ’s. Note that the bj ’s are based on local averages (in time) of the Ft(x)’s
at certain points x. This shares similarity to the approach of Westfall and Wolfinger (1997) for
offline FWER control.

A.2.2 Comparison to SUR for real data
Both the DS and the SUR approaches use super-uniform rewarding. In a nutshell, the DS
approach slows down the clock whereas the SUR approach augments the critical values of existing
OMT procedures in an additive way. While a more detailed comparison can be found in the
following Section A.2.3, we may say that no method dominates the other one uniformly. The
examples given in Section A.2.3 (delayed start, long/infinite delay, ineffective delay) suggest that
the DS method could be more efficient at the very start of the stream but may suffer from
conservativeness afterwards.

To assess the behaviour of the procedures in a practical setting, we reanalyse the IMPC
data from Section 2.5.3 using the DS procedure defined by (A.8) and (A.9) and compare it
with the OB and ρOB from Section 2.3. The results for FWER control at level α = 0.2 are
displayed in Table A.1 and Figure A.1. As Figure A.1 (right panel) shows, the rejection process
{R(T ), T ≥ 1}, is almost identical at the very start. However, for larger T , the delayed approach
makes less discoveries than the ρOB procedure and this, uniformly in time for this data set.
This conservative behaviour is probably caused by under-utilization of wealth as described in
Section A.2.3. More specifically, the non-utilized component of α = 0.2 accumulates up to
time T = 1500 approximately to 0.077, so that approximately 38.5% of α = 0.2 are effectively
neglected. Accordingly, the wealth plot displayed in Figure A.1 shows that the delayed approach
manages to spend more wealth than the OB procedure, but still deviates strongly from the
nominal wealth curve. Figure A.2 illustrates the same phenomenon for the critical values. (This
replaces the old section D.2)

A.2.3 Formal properties
From the definition of the DS approach we obtain the following comparison to OB and ρOB:
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Figure A.1: Comparison with DS. Left: nominal wealth for OB (dashed orange curve), effective
wealth for OB (solid orange curve), effective wealth for ρOB (solid green curve) and effective
wealth for DS (solid purple curve), plot similar to Figure 2.1. Right: rejection numbers, cumu-
lated over time, for the same procedures (same color code). Both plots are computed from the
male IMPC data.

Figure A.2: Critical values of OB (orange), ρOB (green) and DS (purple) for the IMPC data
(left panel is for male, right panel is for female).

• the DS approach improves OB uniformly when γt is nonincreasing: indeed C(t) ≤ t, so that
αDS
t = αγC(t) ≥ αγt = αOB

t .

• the DS approach does not depend on any other tuning parameter such as the bandwidth.
By contrast, choosing this parameter badly in the ρOB procedure may adversely affect its
performance.

• the DS approach is another way of using the super uniformity reward. For instance, if
there is no super uniformity reward, that is, Ft(αγt) = αγt for all t, then bt = t and the
DS procedure reduces to OB.

In addition, we have the following observations:

• Delayed start: If Ft(x) = 0 for all x < 1 and t ≤ T0 and Ft(x) = x for t ≥ T0 + 1, the
DS procedure is much more intuitive: it yields b1 = T0 + 1 by (A.9) and αDS

t = αγt−T0 for
t ≥ T0 + 1 which is the most natural way to proceed (just start the testing process at time
T0 + 1). By contrast, ρOB (with rectangular kernel of bandwidth r) collects some reward
in αρOB

t , 1 ≤ t ≤ T0, spends the reward in the following r time points, but continues with
αρOB
t = αγt for t ≥ T0 +r+1. Hence, delaying spends the super-uniformity more intuitively
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than ρOB in that situation. More generally, in practice, we may therefore expect DS to be
more efficient in the beginning of the stream.

• Long/infinite delay: Conversely, if there exists T0 ≥ 1 such that for all t ≥ bT0
+ 1,

Ft(αγC(T0)+1) = 0, then we have bT0+1 = +∞ from (A.9), which in turn implies C(t) ≤
T0 + 1. But for t ≥ bT0

+ 1, we have C(t) ≥ T0 + 1 by (A.8). Hence, for t ≥ bT0
+ 1,

C(t) = T0 + 1 and the ’spending clock’ freezes. On the one hand, we have αDS
t = αγT0+1

so the delaying works perfectly to effectively improve the OB critical values. On the other
hand, this effectively stops the spending of any further budget and thus a large part of the
wealth is left unspent. This is in contrast to the SUR approach which uses a reward of an
additive nature and thus always has a chance to spend the budget.

• Under-utilization of wealth. The DS method processes each sub-budget αγj one at a time,
until the transition to the next sub-budget αγj+1 is made. In most cases, however, the
inequality (A.9) defining the transition time bj will be a strict inequality, meaning that when
we move on to the next sub-budget we will have used

∑bj
t=bj−1+1 Ft(αγj) < αγj . Thus,

this method does not exhaust the available sub-budgets. Moreover, since it neglects these
’alpha-gaps’, they accumulate over time. This under-utilized wealth leads to unnecessary
conservatism. Removing such gaps was precisely the primary motivation for introducing
our SUR method, see Section 2.2.3.

The most disadvantageous scenario occurs when bt = t for all t ≤ T , so that the DS
procedure reduces to the original OB procedure up to time T . As an example consider
ε ∈ (0, αγT ) for some large T ≥ 1 and assume that the support of each pt is given by
St = {ε, At, αγt−1} ∪ {1} (convention αγ0 = 1), where At is a finite subset of (αγt, αγt−1).
Then we have F1(αγ1) + F2(αγ1) = αγ1 + ε hence b1 = 1, and more generally Ft(αγt) +
Ft+1(αγt) = αγt + ε for all t ≤ T , which implies bt = t for all t ≤ T . However, we know
that OB does not allow to spend all the budget in such a discrete situation, see Figure 2.1.

A potential remedy for the conservatism of the DS method could be to combine it with our
SUR method. We describe such a hybrid approach in more detail in Section A.2.4.

In summary, it may be said that the delaying method is particularly appealing in terms of
simplicity and elegance, while the primary aim of the SUR approach is on efficiency.

A.2.4 Hybrid approach
In this section, we describe a hybrid approach, combining the ideas underlying DS and SUR, in
order to improve the utilization of wealth of DS.

The method starts as follows: first let αHyb
1 = αγ1, . . . , α

Hyb
b1

= αγ1 as long as F1(αγ1) +
· · ·+ Fb1(αγ1) ≤ αγ1. Then consider the reward ρ1 = αγ1 − (F1(αγ1) + · · ·+ Fb1(αγ1)) and let
αHyb
b1+1 = αγ2 +ρ1, . . . , α

Hyb
b2

= αγ2 +ρ1 as long as Fb1+1(αγ2 +ρ1)+ · · ·+Fb2(αγ2 +ρ1) ≤ αγ2 +ρ1.
More generally, let b0 = 0, ρ0 = 0, and for all j ≥ 1,

αHyb
bj−1+1 = αγj + ρj−1, . . . , α

Hyb
bj

= αγj + ρj−1

bj = max

T ≥ 1 :

T∑
t=bj−1+1

Ft(αγj + ρj−1) ≤ αγj + ρj−1


ρj = αγj + ρj−1 −

 bj∑
t=bj−1+1

Ft(αγj + ρj−1)

 .
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Then the online FWER control holds because for all j0 ≥ 1, we have

∑
t≥1

Ft(α
Hyb
t ) =

j0∑
j=1

 bj∑
t=bj−1+1

Ft(αγj + ρj−1)

+ Fbj0+1(αγj0+1 + ρj0)

≤
j0∑
j=1

(αγj + ρj−1 − ρj) + αγj0+1 + ρj0 =

j0+1∑
j=1

αγj ≤ α,

because
∑j0
j=1(ρj−1 − ρj) = −ρj0 (telescopic sum). When ρt = 0 for all t ≥ 1, the hybrid

approach reduces to the DS approach. When bj = j, the hybrid approach reduces to the greedy
SUR procedure.

We can also combine the DS with smoothed SUR rewarding, which gives us the following,
slightly more involved, procedure. For some SUR spending sequence γ′ = (γ′t)t≥1 (nonnegative
and such that

∑
t≥1 γ

′
t ≤ 1), let b0 = 0, ρ0 = 0 and for all j ≥ 1,

αHyb
bj−1+1 = αγj +

j−1∑
i=1

γ′j−iρi, . . . , αHyb
bj

= αγj +

j−1∑
i=1

γ′j−iρi

bj = max

T ≥ 1 :

T∑
t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′j−iρi

)
≤ αγj +

j−1∑
i=1

γ′j−iρi


ρj = αγj +

j−1∑
i=1

γ′j−iρi −

 bj∑
t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′j−iρi

) .

The online FWER control holds because for all j0 ≥ 1, we have

∑
t≥1

Ft(α
Hyb
t ) ≤

j0∑
j=1

 bj∑
t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′j−iρi

)+ αγj0+1 +

j0∑
i=1

γ′j0+1−iρi.

Now letting aT =
∑T
t=1 γ

′
t, we obtain

j0∑
j=1

 bj∑
t=bj−1+1

Ft

(
αγj +

j−1∑
i=1

γ′j−iρi

)
≤

j0∑
j=1

aj0−j+1

(
αγj +

j−1∑
i=1

γ′j−iρi − ρj

)
+

j0∑
j=1

(1− aj0−j+1)

(
αγj +

j−1∑
i=1

γ′j−iρi

)

=

j0∑
j=1

αγj +

j0∑
j=1

j−1∑
i=1

γ′j−iρi −
j0∑
j=1

aj0−j+1ρj

=

j0∑
j=1

αγj +

j0−1∑
i=1

aj0−iρi −
j0∑
j=1

aj0−j+1ρj ,

and the latter is equal to
∑j0
j=1 αγj −

∑j0−1
j=1 γ′j0−j+1ρj − a1ρj0 =

∑j0
j=1 αγj −

∑j0
j=1 γ

′
j0−j+1ρj .

Combining this with the above bound for the FWER concludes the proof.
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To compare the performance of the hybrid approach with the SUR and DS approaches, we
use the simulation setting from Section 2.5.2 in the case where the signal is positioned at the
beginning of the stream for each simulation run, which is the most favorable position of the
signal for any procedure (see Section 2.5.2 for more details). We consider both procedures based
on the uniform kernel (bandwidth h = 100) and those based on the greedy spending sequence
(denoted by ‘greedy’).

Figure A.3 shows that taking super-uniformity into account is always beneficial, regardless of
the specific approach used. The base DS method performs similarly to the greedy ρOB and the
greedy hybrid. In contrast, the hybrid approach based on a uniform kernel improves DS, with
performance close to ρOB. Hence, we conclude that closing the alpha-gaps by smoothing with
an adequate kernel can make the hybrid approach as powerful as the smoothed ρOB method.
However, given the added complexity of the hybrid approach, we prefer to stick with the smoothed
SUR.

Figure A.3: Power of several online FWER controlling approaches for simulated data (see text):
online Bonferroni (OB), Delayed spending (DS), greedy hybrid, greedy ρOB, hybrid, ρOB.

A.3 Complements on generalized α-investing rules

A.3.1 SUR-GAI++ rules
GAI++ rules have been introduced in Ramdas et al. (2017) to control the (m)FDR. Here, we
can extend them to our super-uniform setting as follows. Let us consider the following recursive
constraints: for t ≥ 1,

Rt = 1{pt ≤ αt}
W (t) = W (t− 1)− φt +Rtψt ‘wealth available at time t+ 1’
φt ∈ [0,W (t− 1)] ‘spent at time t’
ψt ≤ bt + min (φt, φt/Ft(αt)− 1) ‘reward at time t’
ψt ≥ 0

bt = α−W01{t ≤ τ1},

where W (0) = W0 ∈ [0, α]. Any choice of W0 and αt, φt, ψt that are Ft−1 measurable and
satisfying the above constraints defines a SUR-GAI++ procedure. Here, the only difference with
the original GAI++ rule is the presence of Ft(αt) instead of αt in the definition of Ψt.

Proposition A.3.1 Consider the setting of Section 4.2 where a null bounding family F =
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{Ft, t ≥ 1} satisfying (2.4) is at hand. Then any SUR-GAI++ procedure controls the mFDR at
level α.

The proof is totally analogous to the one of Theorem 1 in Ramdas et al. (2017) (adapted to
the mFDR, so without using any monotonicity).

A.3.2 GAI++ weighting

Consider (continuous) p-values satisfying (2.1)-(2.3) and weights wt ≥ 0 that are Ft−1 measurable
for all t. In Section 5 of Ramdas et al. (2017), the following (implicit) GAI++ weighting scheme
has been proposed:

Rt = 1{pt ≤ wtαt}
W (t) = W (t− 1)− φt +Rtψt

φt ∈ [0,W (t− 1)]

ψt ≤ bt + min (φt, φt/(wtαt)− 1)

ψt ≥ 0

bt = α−W01{t ≤ τ1}.

Note that the latter constraints are similar to the constraints given in Section A.3.1 for Ft(x) =
(wtx) ∧ 1 (up to the ‘∧1’ which makes the constraints here slightly more stringent) so that this
weighting case is a particular SUR-GAI++ procedure.

For given raw weights rt ≥ 0 (Ft−1 measurable), an explicit procedure which is used in
Ramdas et al. (2017)1, is obtained by choosing αt, wt, φt, ψt as follows:

wt = rt ∧
1

1− bt
φt = αt = W0γt +

∑
j≥1

γt−τjψτj

ψt = bt + min (φt, 1/wt − 1) .

This choice is valid because αt ≤W (t− 1) for all t. Indeed,

W (t− 1) = W0 +

t−1∑
i=1

(−αi +Riψi),

so αt ≤W (t− 1) if and only if
∑t
i=1 αi ≤W0 +

∑t−1
i=1 Riψi, which is true.

A.3.3 Our ρ-LORD is a SUR-GAI++ rule

We claim here that the procedure ρ-LORD corresponds to a SUR-GAI++ rule with the choice
φt = Ft(αt), ψt = bt, and

αt = W0γt + (α−W0)γt−τ1 + α
∑
j≥2

γt−τj +

t−1∑
i=1

γ′t−iρi t ≥ 1. (A.10)

1This procedure is available at https://github.com/fanny-yang/OnlineFDRCode

https://github.com/fanny-yang/OnlineFDRCode
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To establish this, we check that all constraints given in Section A.3.1 are satisfied. The only non-
trivial one is φt = Ft(αt) ≤W (t−1). Let us now prove it. Recall thatW (t) = W (t−1)−φt+Rtbt
and W (0) = W0. Hence α1 = W0γ1 ≤W0. Moreover, for t ≥ 2,

W (t− 1) = W0 + (α−W0)1{t− 1 ≥ τ1}+ α
∑
j≥2

1{t− 1 ≥ τj} −
t−1∑
i=1

Fi(αi).

So we have ᾱt ≤W (t− 1) for the critical value

ᾱt =

(
t∑
i=1

γi

)
W0 +

t−1∑
i=1

(α−W0)γi−τ1+11{i ≥ τ1}+ α
∑
j≥2

γi−τj+11{i ≥ τj}


−

t−1∑
i=1

[at−iFi(ᾱi) + (1− at−i)ᾱi] ,

by letting at =
∑t
i=1 γ

′
i. But now, we have that ᾱt = αt for all t, for αt defined by (A.10).

Indeed, this can be seen from Lemma A.1.2, applied with λ = 0 and α0
T being the LORD critical

values.

A.4 Additional numerical experiments

A.4.1 Sample size

Figure A.4 illustrates results when the sample size N , i.e., the subjects number per group, takes
values in the set {25, 50, . . . , 150}. As expected, the power plots show that the detection problem
becomes easier when N increases. In fact, for large N the power of all procedures converge to
1. We see that our rewarded procedures do well on the whole range of N values and improve
substantially on existing OMT procedures for small and moderate values of N , including our
default value N = 25.

A.4.2 Signal strength

Here, we vary the strength of the signal p3 in the set {0.1, 0.2, . . . , 1}. We see that the SUR
procedures dominate their base counterparts, as expected. In addition, depending on the signal
strength, the gain in power can be considerable. Also note that, perhaps surprisingly, all curves
exhibit a decrease in power for p3 near 1. Since this happens even for the original OB procedure,
this is not due to the super-uniformity reward, but could perhaps be caused by the behavior of
the power function of multiple Fisher exact tests taken at different levels.

A.4.3 Local alternatives

As Figure A.4 demonstrates, for a fixed value of the signal strength p3, the detection problem
becomes easier as N increases, so that all procedures attain a power of 1. In this section we are
interested in obtaining a more refined analysis of the various power curves when N is large. To
this end, we introduce local alternatives, i.e. we now model p3 as a function of the sample size
N . To be more specific, we take N ∈ {5, 10, . . . , 30} × 1000 and set p3 = p1 + 1√

N
for mFDR

procedures and, p3 = p1+ 1.5√
N

for FWER procedures, we fix p1 = p2 = 0.1, and generate simulated
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Figure A.4: Power and type I error rates of the considered procedures versus N ∈
{25, 50, . . . , 150}, the number of subjects in the groups.

Figure A.5: Power and type I error rates of the considered procedures versus the strength of the
signal p3 ∈ {0.1, 0.2, . . . , 0.9, 1}.

data as in Section 5.2. Figure A.6 displays power and error rates for this data. Taking N as
a (crude) proxy for discreteness, we observe that even with a low discreteness (say N ≤ 30000)
the SUR methods still provide some degree of improvement. Finally, for FWER procedures,
ADDIS-spending provides the best power performance over the whole range of the experiment.
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This might be explained by the setting causing very conservative nulls p-values (i.e. very close
to 1), thus allowing the discarding scheme to redistribute and spend a large part of the wealth on
testing alternative hypotheses. Using the SUR method along with the discarding scheme (Tian
and Ramdas, 2019, 2021) might provide an interesting avenue for further improvement, but this
would define yet another class of procedures, which is outside of the scope of this paper.

Figure A.6: Power and type I error rates of the considered procedures versusN ∈ {5, 10, . . . , 30}×
1000, with local alternatives.

A.4.4 Adaptivity parameter

We study the choice of λ for the procedures using adaptivity. It seems that λ = 0.5 is a reasonable
choice for the adaptive procedures.

A.4.5 Rectangular kernel bandwidth

Finally, we study the choice of the bandwidth parameter for the rectangular kernel used for the
rewarded procedures. As we can see, using a smaller bandwidth provides the best performance
for the mFDR controlling rewarded procedures, whereas FWER controlling procedures require a
larger bandwidth. The choices h = 100 for FWER controlling procedures, and h = 10 for mFDR
controlling procedures seem reasonable although not necessarily optimal.

A.5 Additional figures for the analysis of IMPC data

A.5.1 Localization of small p-values

Figures A.9 and A.10 show that small p-values mostly occur at the beginning of the data set,
both for male and female mice.
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Figure A.7: Power and type I error rates, for the considered procedures, versus the adaptivity
parameter λ.

Figure A.8: Power for FWER (left) and mFDR (right) rewarded procedures versus the proportion
of signal πA, for different kernel bandwidths.

A.5.2 Figures for female mice in the IMPC data
Figures A.11 and A.12 display the critical values of the studied online procedures when applied
to the IMPC data in the case of female mice.
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Figure A.9: p-values for male mice in the IMPC data of Section 2.5.3. The left panel presents
all p-values, the right panel the first 3000 p-values. The p-values have been transformed as in
Figure 2.3.
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Figure A.10: p-values for female mice in the IMPC data of Section 2.5.3. The left panel presents
all p-values, the right panel the first 3000 p-values. The p-values have been transformed as in
Figure 2.3.
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Figure A.11: Same as Figure 2.7 but for female mice of IMPC data (see Section 2.5.3).

Figure A.12: Same as Figure 2.8 for female mice of IMPC data (see Section 2.5.3).
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B.1 Power results

B.1.1 Top-k setting

Definition B.1.1 The sparse one-sided Gaussian location model of parameter m, b, c, β, denoted
as P

(m)
b,c,β, is defined as follows: pi = Φ(Xi), 1 ≤ i ≤ m, the Xi’s are independent, with Xi ∼

N (0, 1) for i ∈ H0 and Xi ∼ N (µm, 1) otherwise, for µm =
√

2β logm + b, b > 0, and m1 =
|H1| = cm1−β, c ∈ (0, 1), β ∈ [0, 1).

Note that β = 0 is the dense case for which the alternative mean µm = b > 0 is a fixed
quantity, whereas β > 0 in the sparse case, for which µm =

√
2β logm + b tends to infinity.

In both case, the magnitude of alternative mean is defined to be on the ‘verge of detectability’
where the BH procedure has some non-zero power, see Bogdan et al. (2011); Neuvial and Roquain
(2012); Abraham et al. (2021) for instance.

125
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Theorem B.1.1 Let α ∈ (0, 1). In the above one-sided Gaussian location model P(m)
b,c,β, the

number of rejections k̂α of the BH procedure is such that, as m grows to infinity,

P
(m)
b,c,β(t∗m ≤ αk̂α/m ≤ t]m) ≥ 1− 2e−dm1 , for m1/m . t∗m ≤ t]m . m1/m, (B.1)

for some constant d > 0 (depending on α, β, b), where t∗m ∈ (0, 1) is the unique solution of
Gm(t) = 2t/α, t]m ∈ (0, 1) is the unique solution of Gm(t) = 0.5t/α, and where Gm(t) =

(m0/m)t+ (m1/m)Φ(Φ
−1

(t)− µm), with Φ(z) = P(Z ≥ z), z ∈ R.

Proof B.1.1 First let Fm(t) = Φ(Φ
−1

(t) − µm), Ψm(t) = Fm(t)/t and observe that Ψm is
continuous decreasing on (0, 1] with lim0 Ψm = +∞. This implies that t∗m, t]m ∈ (0, 1) as described
in the statement both exist, with

t∗m = Ψ−1
m (α/2), t]m = Ψ−1

m (τm(2α)), τm(α) =
m

m1

(
1

α
− m0

m

)
.

We first establish

t∗m & m1/m (B.2)

t]m . m1/m. (B.3)

If β = 0, then m0/m = 1 − c, m1/m = c, µm = b, τm > 0, Fm(t) = Φ(Φ
−1

(t) − b), Ψm(t) =

Φ(Φ
−1

(t) − b)/t, τm(α) all do not depend on m. Hence, t∗m and t]m are both constant, which
establishes (B.2) and (B.3). Let us now turn to the sparse case, for which β ∈ (0, 1). The
inequality (B.3) follows from the upper bound

0.5t]m/α = Gm(t]m) ≤ t]m +m1/m.

For (B.2), the analysis is slightly more involved. We first prove that for m large enough

Φ
−1

(t∗m) ≤ µm − b. (B.4)

This will establish (B.2), since it implies Fm(t∗m) ≥ Fm(Φ(µm − b)) = Φ(−b) > 0 and also
t∗m = (τm(α/2))−1Fm(t∗m) & m1/m. On the one hand,

Ψm(Φ(µm − b)) =
Φ(−b)

Φ(µm − b)
≥ Φ(−b) µm − b

φ(µm − b)
= Φ(−b)mβ

√
2β logm

because µm − b =
√

2β logm and φ(µm − b) = m−β, and by using Φ(x) ≤ φ(x)/x for all x > 0.
On the other hand,

Ψm(t∗m) = τm(α/2) ≤ 2

α
mβ .

Hence, for m large enough, we have Ψm(Φ(µm − b)) ≥ Ψm(t∗m) = Ψm(Φ(Φ
−1

(t∗m))), which in
turn implies (B.4).

We now turn to prove the result (B.1) and follow for a classical concentration argument. Let

Ĝm(t) = m−1
m∑
i=1

1{pi ≤ t}, t ∈ [0, 1],
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so that Gm(t) = EĜm(t) for all t ∈ [0, 1]. Hence, for all t ∈ (0, 1),

P(αk̂α/m < t) ≤ P
(
Ĝm(t) ≤ t/α

)
= P

(
Ĝm(t)−Gm(t) ≤ t/α−Gm(t)

)
,

because αk̂α/m = max{t ∈ (0, 1) : Ĝm(t) ≥ t/α} by definition of k̂α. Applying this with t = t∗m,
this gives

P(αk̂α/m < t∗m) = P
(
Ĝm(t∗m)−Gm(t∗m) ≤ −Gm(t∗m)

)
≤ exp (−cmGm(t∗m)) ≤ exp (−Cm1Fm(t∗m)) ,

for some constant C > 0, by applying Bernstein’s inequality. Since Fm(t∗m) ≥ Φ(−b) > 0, this
gives P(αk̂α/m < t∗m) ≤ e−dm1 for m large enough and some constant d > 0.

Next, for all t ∈ [t]m, 1), still applying Bernstein’s inequality,

P(αk̂α/m > t)

≤
m∑
k=1

1{αk/m > t}P
(
Ĝm(αk/m)−Gm(αk/m) ≥ k/m−Gm(αk/m)

)
≤

m∑
k=1

1{αk/m > t} exp

(
−m (k/m−Gm(αk/m))2

Gm(αk/m) + (1/3)(k/m−Gm(αk/m))

)
≤ m exp

(
−Cmt]m

)
,

because for all αk/m ≥ t]m, k/m − Gm(αk/m) ≥ Gm(αk/m) ≥ Gm(t]m) = 0.5t]m/α (given the
monotonicity of t 7→ Gm(t)/t). Applying this for t = t]m ∈ (0, 1), we obtain

P(αk̂α/m > t]m) ≤ e−dm1 ,

because t]m ≥ t∗m & m1/m. This proves the result.

B.1.2 Pre-ordered setting
We introduce below a model generalizing the one of Lei and Fithian (2016) to the possibly sparse
case. Here, without loss of generality we assume that the ordering π is identity, that is, π(i) = i
for all i ∈ {1, . . . ,m}. Below, with some abuse, the notation π will be re-used to stick with the
notation of Lei and Fithian (2016).

Definition B.1.2 The sparse VCT model of parameters m,π, β, F0, F1, denoted as P
(m)
π,β,F0,F1

,
is the p-value mixture model where (pk, Hk) ∈ [0, 1] × {0, 1}, 1 ≤ k ≤ m, are independent and
generated as follows:

• the Hk, 1 ≤ k ≤ m, are independent and P(Hk = 1) = πm(k/m), 1 ≤ k ≤ m, with πm(x) =
π(mβx), x ≥ 0, where π : [0,∞)→ [0, 1) is some measurable function (instantaneous signal
probability function) with π(0) > 0 and π(x) = π(1) for x ≥ 1 and β ∈ [0, 1) is a sparsity
parameter.

• conditionally on H1, . . . ,Hk, the p-values pk, 1 ≤ k ≤ m, are independent, with a marginal
distribution super-uniform under the null: pk | Hk = 0 ∼ F0, 1 ≤ k ≤ m, where F0 is a
c.d.f. with F0(t) ≤ t for all t ∈ [0, 1]; and pk |Hk = 1 ∼ F1, 1 ≤ k ≤ m, where F1 is some
alternative c.d.f.
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We denote Π(t) := t−1
∫ t

0
π(s)ds, with Π(0) = π(0) and

Πm(t) := t−1

∫ t

0

πm(s)ds = t−1

∫ t

0

π(mβs)ds = m−βt−1

∫ mβt

0

π(s)ds = Π(mβt)

the expected fraction of signal before time mt. We also let π1 := Πm(1) =
∫ 1

0
πm(s)ds = m−βΠ(1)

the overall expected fraction of signal. We consider the asymptotic where m tends to infinity and
F0, F1 are fixed.

When β = 0, πm, Πm are fixed and we recover the dense VTC model introduced in Lei and
Fithian (2016) (also noting that we are slightly more general because F0 is possibly non-uniform
and F1 not concave). Interestingly, the above formulation can also handle the sparse case for
which β ∈ (0, 1) and the probability to generate a signal is shrunk to 0 by a factor mβ . For
instance, if π(1) = 0, the model only generates null p-values pk+1, . . . , pm for k ≥ m1−β .

We now analyze the asymptotic behavior of the number of rejections of the LF procedure.
By following the same heuristic than in Lei and Fithian (2016) (which follows by a concentration
argument), we have from (3.32) that for k = bmtc,

F̂DPk =
s

1− λ
1 +

∑k
i=1 1{pi > λ}

1 ∨
∑k
i=1 1{pi ≤ s}

≈ s

1− λ

(∑k
i=1(1− πm(i/m))

)
(1− F0(λ)) +

(∑k
i=1 πm(i/m)

)
(1− F1(λ))(∑k

i=1(1− πm(i/m))
)
F0(s) +

(∑k
i=1 πm(i/m)

)
F1(s)

≈
1 + Πm(t)

(
1−F1(λ)

1−λ − 1
)

1 + Πm(t)
(
F1(s)
s − 1

) = FDP∞(mβt),

by assuming F0(s) = s, F0(λ) = λ, F1(s) > s, F1(λ) > λ and by letting

FDP∞(t) =
1 + Π(t)

(
1−F1(λ)

1−λ − 1
)

1 + Π(t)
(
F1(s)
s − 1

) , t ≥ 0. (B.5)

By (3.32), the quantity k̂α/m1−β should be asymptotically close to

t∗α = max{t ∈ [0,+∞) : FDP∞(t) ≤ α}, (B.6)

with the convention t∗α = +∞ if the set is not upper bounded. We should however ensure that
the latter set is not empty. For this, we let

α =
1 + π(0)

(
1−F1(λ)

1−λ − 1
)

1 + π(0)
(
F1(s)
s − 1

) . (B.7)

Hence, r̂α =
∑k̂α
i=1 1{pi ≤ s}, the number of rejections of LF procedure, should be close to(∑k̂α

i=1(1− πm(i/m))
)
F0(s) +

(∑k̂α
i=1 πm(i/m)

)
F1(s) & k̂αs ≈ m1−βt∗αs. This heuristic is for-

malized in the next result.
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Theorem B.1.2 Consider a sparse VCT model P(m)
π,β,F0,F1

with parameters β, π, F0, F1 (see Def-
inition B.1.2) and the LF procedure with parameter s, λ (see (3.32)), with the assumptions:

(i) Π : t ∈ [0,∞)→ R+ is continuous decreasing and L-Lipschitz;

(ii) F0(s) = s, F0(λ) = λ, F1(s) > s, F1(λ) > λ;

(iii) α > α where α is defined by (B.7).

Let α′ = (α + α)/2 ∈ (α, α), t∗α′ ∈ (0,+∞] given by (B.6), t∗m = t∗α′ ∧mβ and let a ≥ 1 be an
integer a ≤ m1−βt∗m such that r = 4

a1/4

(
1
s + 1

1−λ

)
is small enough to provide r ≤ (α − α)/4.

Then the number of rejections r̂α =
∑k̂α
i=1 1{pi ≤ s} of the LF procedure (3.32) is such that

P
(m)
π,β,F0,F1

(r̂α < r∗m) ≤ 2(2 + a1/2)e−2a1/2 , r∗m = bm1−βt∗mcs/2. (B.8)

In particular, choosing a = 1 + b(logm)2c, we have as m grows to infinity, m1−β/r̂α = OP (1).

Condition (ii) is more general that in Lei and Fithian (2016) and allows to handle binary p-
values, like in the ‘knockoffs’ situation (for which F0 and F1 are not continuous). The condition
(iii) was overlooked in Lei and Fithian (2016), but it is needed to ensure the existence of t∗α. It
reads equivalently

π(0) >
1− α

1− 1−F1(λ)
1−λ + α

(
F1(s)
s − 1

) , (B.9)

which provides that the probability to generate a null is sufficiently large at the beginning of
the p-value sequence, with a minimum amplitude function of F1(s) and F1(λ). Note that in the
‘knockoffs’ case where s = λ = 1/2, we have α = 1−π(0)M

1+π(0)M where M = 2F1(1/2)− 1 > 0 can be
interpreted as a ‘margin’. Hence, the critical level α is decreasing in π(0)M . Hence, the setting
is more favorable either when π(0) increases, or when the margin M increases.

Proof B.1.2 First note that FDP∞(t) is an decreasing function of Π(t) because 1−F1(λ)
1−λ < 1 <

F1(s)
s , see (B.5). Since Π(t) is decreasing from π(0) to π(1) = Π(+∞), we have that FDP∞ :

[0,+∞)→ [α, α] is continuous increasing, where α =
(

1 + π(1)
(

1−F1(λ)
1−λ − 1

))
)/
(

1 + π(1)
(
F1(s)
s − 1

))
.

Hence, if α′ < α, we have 0 < t∗α′ < +∞, t∗m = t∗α′ for m large enough, and thus FDP∞(t∗m) = α′.
If α′ ≥ α, t∗α′ = +∞, t∗m = mβ and FDP∞(t∗m) ≤ α′. Both cases are considered in what follows.
Consider the events

Ω1 =

{
sup

a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

1{pi > λ} − k−1
k∑
i=1

P(pi > λ)

∣∣∣∣∣ ≤ 1/a1/4

}
;

Ω2 =

{
sup

a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

1{pi ≤ s} − k−1
k∑
i=1

P(pi ≤ s)

∣∣∣∣∣ ≤ 1/a1/4

}
.

By Lemma B.1.2, the event Ω1 ∩ Ω2 occurs with probability larger than 1 − 2(2 + a1/2)e−2a1/2 .
Let

e1 = 1 + Πm(m−βt∗m)

(
1− F1(λ)

1− λ
− 1

)
= 1 + Π(t∗m)

(
1− F1(λ)

1− λ
− 1

)
;

e2 = 1 + Πm(m−βt∗m)

(
F1(s)

s
− 1

)
= 1 + Π(t∗m)

(
F1(s)

s
− 1

)
,
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be the numerator and denominator of FDP∞(t∗α′), so that e1/e2 = FDP∞(t∗m) ≤ α′. Let k0 =
bm1−βt∗mc ≤ m. Provided that k0 ≥ a, we have∣∣∣∣∣k−1

0

k0∑
i=1

P(pi > λ)− (1− λ)e1

∣∣∣∣∣ ≤
∣∣∣∣∣k−1

0

k0∑
i=1

πm(i/m)−Πm(m−βt∗m)

∣∣∣∣∣ |(1− F1(λ))− (1− λ)|

≤

∣∣∣∣∣k−1
0

k0∑
i=1

πm(i/m)−Πm(k0/m)

∣∣∣∣∣+
∣∣Πm(k0/m)−Πm(m−βt∗m)

∣∣
≤ 1/a+ L/m1−β ,

by applying Lemma B.1.1 and using that Π(·) is L-Lipschitz. Similarly,∣∣∣∣∣k−1
0

k0∑
i=1

P(pi ≤ s)− se2

∣∣∣∣∣ ≤ 1/a+ L/m1−β .

We deduce that on Ω1 ∩ Ω2 and when k0 ≥ a, we have

F̂DPk0 ≤
e1 + 1

a(1−λ) + L
m1−β(1−λ)

+ 1
k0(1−λ) + 1

a1/4(1−λ)

1
as ∨

(
e2 − 1

as −
L

m1−βs
− 1

k0s
− 1

a1/4s

) ≤ e1 + r

e2 − r
≤ e1

e2
+ 4r,

provided that e2 ≥ 2r, because e1 ≤ 1, e2 ≥ 1, and by considering r as in the statement. Since
e1/e2 ≤ α′ ≤ α − 4r and e2 ≥ 1 ≥ 2r by assumption, we have F̂DPk0 ≤ α and thus k̂α ≥ k0

on Ω1 ∩ Ω2. The result is proved by noting that r̂α =
∑k̂α
i=1 1{pi ≤ s} ≥

∑k0
i=1 1{pi ≤ s} ≥

(e2 − r)k0s ≥ k0s/2 on this event.

Lemma B.1.1 In the setting of Theorem B.1.2, we have for all a ≥ 1, m ≥ a,

sup
a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

πm(i/m)−Πm(k/m)

∣∣∣∣∣ ≤ 1/a. (B.10)

Proof B.1.3 First note that because πm is nonnegative continuous decreasing, we have for all
k ≥ 1,

(1/k)

k∑
i=1

πm(i/m) ≤ Πm(k/m) = (m/k)

∫ k/m

0

πm(s)ds ≤ (1/k)

k−1∑
i=0

πm(i/m).

Since πm(0) ≤ 1, the result is clear.

This following lemma is similar to Lemma 1 in Lei and Fithian (2016).

Lemma B.1.2 Let Xi ∼ B(pi), 1 ≤ i ≤ m, be independent Bernoulli variables for pi ∈ [0, 1],
1 ≤ i ≤ m. Then we have for all a ≥ 1 and m ≥ a,

P

(
sup

a≤k≤m

∣∣∣∣∣k−1
k∑
i=1

Xi − pi

∣∣∣∣∣ ≥ 1/a1/4

)
≤ (2 + a1/2)e−2a1/2 . (B.11)
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Proof B.1.4 By Hoeffding’s inequality, we have for all x > 0,

P

(
sup

1≤k≤a

∣∣∣∣∣k−1
k∑
i=1

(Hi − πm(i/m))

∣∣∣∣∣ ≥ x
)
≤ 2

∑
k≥a

e−2kx2

=
2

1− e−2x2 e
−2ax2

≤ (2 + 1/x2)e−2ax2

.

We deduce the result by considering x = 1/a1/4.

B.1.3 Online setting

Definition B.1.3 The online one-sided Gaussian mixture model of parameters π1, F1, denoted
by Pπ1,F1

, is given by the p-value stream (pk, Hk) ∈ [0, 1]× {0, 1}, k ≥ 1, which is i.i.d. with

• P(Hk = 1) = π1 for some fixed π1 ∈ (0, 1);

• p-values are uniform under the null: pk |Hk = 0 ∼ U(0, 1);

• p-values have the same alternative distribution: pk | Hk = 1 ∼ F1, where F1 is the c.d.f.
corresponding to the one-sided Gaussian problem, that is, F1(x) = Φ̄(Φ̄−1(x)−µ), x ∈ [0, 1],
for some µ > 0.

Here, we make no sparsity assumption: π1 is assumed to be constant across time. This will
ensure that the online procedure maintains a chance to make discoveries even when the time
grows to infinity.

Theorem B.1.3 Consider the one-sided Gaussian online mixture model and the LORD proce-
dure with W0 ∈ (0, α) and a spending sequence γk = 1

k(log(k))γ , γ > 1. Then its rejection number
R(k) at time k satisfies: for all a ∈ (0, 1), k ≥ 1,

P(R(k) < k1−a) ≤ ck−a, (B.12)

where c is some constant only depending on α ,W0, γ, µ and π1. In particular, k1−a/R(k) =
OP (1) when k tends to infinity.

Proof B.1.5 We get inspiration from the power analysis of Javanmard and Montanari (2018).
Let c = min(α −W0,W0). By definition (3.42), the LORD procedure makes (point-wise) more
rejections than the procedure given by the critical values

αT = cmax{γT−τj , j ≥ 0}, (B.13)

where, for any j ≥ 1, τj is the first time that the procedure makes j rejections, that is,

τj = min{t ≥ 0 : R(t) ≥ j} (τj = +∞ if the set is empty), (B.14)

(note that τ0 = 0) for R(T ) =
∑T
t=1 1{pt ≤ αt}. Let ∆j = τj − τj−1 the time between the j-th

rejection and the (j − 1)-th rejection. It is clear that (R(t))t≥1 is a renewal process with holding
times (∆j)j≥1 and jump times (τj)j≥1. In particular, the ∆j’s are i.i.d. As a result, we have for
all r, k ≥ 1,

P(R(k) < r) ≤ P(τr ≥ k) = P(∆1 + · · ·+ ∆r ≥ k) ≤ rE∆1/k,
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where

E∆1 =
∑
m≥1

P(∆1 ≥ m) =
∑
m≥1

m∏
`=1

(1−G(cγ`)) ≤
∑
m≥1

e−mG(cγm).

In addition, since G is concave,

G(x)

x
≥ g′(x) = π0 + π1c e

µΦ̄−1(x) ≥ ec
′
√

2 log(1/x) ≥ (log(1/x))γ+2,

for x small enough and c, c′ > 0 some constants. This gives for large m ≥ M , e−mG(cγm) ≤
e−cmγm(log(1/(cγm)))2+γ ≤ e−2 logm, for some M > 0, by the choice made for γm. As a result,

E∆1 ≤ C +
∑
m≥M

e−mG(cγm) ≤ C +
∑
m≥M

e−cmγm(log(1/(cγm)))γ+2

≤ C +
∑
m≥1

e−2 logm = C + π2/6,

for some constant C > 0. This gives

P(R(k) < r) ≤ r(C + π2/6)/k.

and taking r = k1−a gives (B.12).

B.2 Proofs

B.2.1 Proof of Proposition 3.2.1

For j ≥ 1, let δj = δj−2, τj = 2−j and

Aj =

{
∀t ∈ [τj , 1], n−1

n∑
i=1

1{pi ≤ t} ≤ t λj

}
;

λj = h−1

(
log(1/δj)

nτj/(1− τj)

)
,

so that by Wellner’s inequality, we have P(Aj) ≥ 1− δj and with a union bound P(∩j≥1Aj) ≥
1 − δπ2/6. Now let t ∈ (0, 1) and j0 = min{j ≥ 1 : t ≥ τj} = min{j ≥ 1 : j ≥ log2(1/t)}, so
that j0 = dlog2(1/t)e ≥ 1. This yields

log(1/δj0) = log(1/δ) + 2 log (dlog2(1/t)e) .

On the event ∩j≥1Aj , we have, since t ∈ [τj0 , 1] by definition,

n−1
n∑
i=1

1{pi ≤ t} ≤ t λj0 = th−1

(
log(1/δj0)

nτj0/(1− τj0)

)
= th−1

(
log(1/δ) + 2 log (dlog2(1/t)e)

ng(t)

)
,

because τj0 = 2−dlog2(1/t)e. The result then comes from replacing δ by δ6/π2.

B.2.2 Proof of Proposition 3.2.3
Let us prove it for the adaptive uniform Wellner envelope (the other ones being either simpler
or provable by using a similar argument). The idea is to prove that on an event where the
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(non-adaptive) Wellner envelope (3.14) is valid, we also have m0 ≤ m̂Well
0 . The result is implied

just by monotonicity (Lemma B.4.1).
For this, we come back to apply (3.13) with (U1, . . . , Un) = (pi, i ∈ H0), n = m0. Hence, on

an event with probability at least 1− δ, we have for all t ∈ (0, 1),

m−1
0

∑
i∈H0

1{pi ≤ t} ≤ t h−1

(
Ct
tm0

)
≤ t

(
1 +

√
Ct/(2tm0)

)2

,

where we apply an upper bound coming from Lemma B.4.1. This gives

Vt/m0 ≥ 1− t
(

1 +
√
Ct/(2tm0)

)2

= 1− t−
√

2tCt/m0 − Ct/(2m0).

As a result, Vt ≥ m0(1− t)−
√

2tCtm0−Ct/2 and thus (1− t)m0−
√

2tCtm
1/2
0 −Ct/2−Vt ≤ 0,

which gives

m0 ≤

(√
2tCt +

√
2tCt + 4(1− t)(Ct/2 + Vt)

2(1− t)

)2

=

(√
tCt

2(1− t)2
+

√
Ct

2(1− t)2
+

Vt
1− t

)2

.

Since this is uniform in t, we can take the minimum over t, which gives the m0 confidence bound
m̂Well

0 .

B.3 Tools of independent interest

B.3.1 A general envelope for a sequence of tests

An important basis for our work is the following theorem, which has the flavor of Lemma 1 of
Katsevich and Ramdas (2020), but based on a different martingale inequality, derived from a
Freedman type bound (see Section B.3.2).

Theorem B.3.1 Consider a potentially infinite set of null hypotheses H1, H2, . . . for the dis-
tribution P of an observation X, with associated p-values p1, p2, . . . (based on X). Consider
an ordering π(1), π(2), . . . (potentially depending on X) and a set of critical values α1, α2, . . .
(potentially depending on X). Let λ ∈ [0, 1) be a parameter and assume that there exists a
filtration

Fk = σ
(
(π(i))1≤i≤k, (1{pπ(i) ≤ αi})1≤i≤k, (1{pπ(i) > λ})1≤i≤k

)
, k ≥ 1,

such that for all k ≥ 2,

P(pπ(k) ≤ t | Fk−1, Hπ(k) = 0) ≤ t for all t ∈ [0, 1]. (B.15)

Then, for any δ ∈ (0, 1), with probability at least 1− δ, it holds

∀k ≥ 1,

k∑
i=1

(1−Hπ(i))1{pπ(i) ≤ αi} ≤ V k,
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for

V k =

k∑
i=1

(1−Hπ(i))1{pπ(i) > λ} αi
1− λ

+ ∆

(
k∑
i=1

(1−Hπ(i))νi

)
, (B.16)

where ∆(u) = 2
√
εu
√
u ∨ 1 + 1

2εu, εu = log((1 +κ)/δ) + 2 log (1 + log2 (u ∨ 1)), u > 0, κ = π2/6.
and νi = αi(1 + min(αi, λ)/(1− λ)), for i ≥ 1.

Proof B.3.1 By Lemma B.3.1, we can apply Corollary B.3.2 (it self coming from Freedman’s
inequality) with

ξi = (1−Hπ(i))

(
1{pπ(i) ≤ αi} − Fi(αi)

1{pπ(i) > λ}
1− Fi(λ)

)
,

where Fi(αi) and Fi(λ) are defined by (B.18). First note that ξi ≤ 1 =: B almost surely. Let us
now prove

E(ξ2
i | Fi−1) ≤ (1−Hπ(i))νi. (B.17)

Indeed, assuming first αi ≤ λ, we have by (B.15),

E(ξ2
i | Fi−1) = (1−Hπ(i))

(
E(1{pπ(i) ≤ αi} | Fi−1) + (Fi(αi))

2E(1{pπ(i) > λ} | Fi−1)

(1− Fi(λ))2

)
≤ (1−Hπ(i))(αi + α2

i /(1− λ)) = (1−Hπ(i))νi.

which gives (B.17). Now, if αi > λ, still by (B.15),

E(ξ2
i | Fi−1) = (1−Hπ(i))

(
E(1{pπ(i) ≤ αi} | Fi−1) + (Fi(αi))

2E(1{pπ(i) > λ} | Fi−1)

(1− Fi(λ))2

−2
Fi(αi)

1− Fi(λ)
E(1{λ < pπ(i) ≤ αi} | Fi−1)

)
= (1−Hπ(i))

[
Fi(αi) + (Fi(αi))

2/(1− Fi(λ))− 2Fi(αi)(Fi(αi)− Fi(λ))/(1− Fi(λ))
]

= (1−Hπ(i))Fi(αi)
[
1 + (2Fi(λ)− Fi(αi))/(1− Fi(λ))

]
≤ (1−Hπ(i))Fi(αi)

[
1 + Fi(λ)/(1− Fi(λ))

]
≤ (1−Hπ(i))νi,

which implies (B.17) also in that case. Finally, (B.17) is established, which yields

∀k ≥ 1, Sk ≤ 2
√
εk(δ)

√√√√ k∑
i=1

(1−Hπ(i))νi + 4εk(δ)

and thus (B.16).

Lemma B.3.1 In the setting of Theorem B.3.1, let

Fk(αk) = P(pπ(k) ≤ αk | Fk−1, Hπ(k) = 0), Fk(λ) = P(pπ(k) ≤ λ | Fk−1, Hπ(k) = 0) (B.18)

the process (Sk)k≥1 defined by

Sk =

k∑
i=1

(1−Hπ(i))

(
1{pπ(i) ≤ αi} − Fi(αi)

1{pπ(i) > λ}
1− Fi(λ)

)
, k ≥ 1,
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is a martingale with respect to the filtration (Fk)k≥1.

Proof B.3.2 First, Sk is clearly Fk measurable. Second, we have for all k ≥ 2,

E(Sk | Fk−1) = E

(
Sk−1 + (1−Hπ(k))

(
1{pπ(k) ≤ αk} − Fk(αk)

1{pπ(k) > λ}
1− Fk(λ)

)
| Fk−1

)
= Sk−1 + (1−Hπ(k))(Fk(αk)− Fk(αk)) = Sk−1.

B.3.2 Uniform-Empirical version of Freedman’s inequality

We establish a time-uniform, empirical Bernstein-style confidence bound for bounded martin-
gales. Various related inequalities have appeared in the literature, in particular in the online
learning community. The idea is based on ‘stitching’ together time-uniform bounds that are
accurate on different segments of (intrinsic) time. The use of the stitching principle has been
further pushed and developed into many refinements by Howard et al. (2021), who also propose
a uniform empirical Bernstein bound as a byproduct. The version given here, based on a direct
stitching of Freedman’s inequality, has the advantage of being self-contained with an elementary
proof (though the numerical constants may be marginally worse than Howard et al.’s).

We first recall Freedman’s inequality in its original version (Freedman, 1975). Let (ξi,Fi)i≥1

be a supermartingale difference sequence, i.e. E [ξi|Fi−1] ≤ 0 for all i. Define Sn :=
∑n
i=1 ξi

(then (Sn,Fn) is a supermartingale), and Vn :=
∑n
i=1 Varξi|Fi−1.

Theorem B.3.2 (Freedman’s inequality; Freedman, 1975, Theorem 4.1) Assume ξi ≤
1 for all i ≥ 1. Then for all t, v > 0:

P [Sn ≥ t and Vn ≤ v for some n ≥ 1] ≤ exp (−ϕ(v, t)) , (B.19)

where
ϕ(v, t) := (v + t) log

(
1 +

t

v

)
− t. (B.20)

We establish the following corollary (deferring the proof for now):

Corollary B.3.1 Assume ξi ≤ 1 for all i ≥ 1. Then for all δ ∈ (0, 1) and v > 0:

P
[
Sn ≥

√
2v log δ−1 +

log δ−1

2
and Vn ≤ v for some n ≥ 1

]
≤ δ. (B.21)

Following the stitching principle applied to the above we obtain the following.

Corollary B.3.2 Assume ξi ≤ B for all i ≥ 1, where B is a constant. Put Ṽk := (Vk ∨B2) and
κ = π2/6. Then for all δ ∈ (0, 1/(1 + κ)), with probability at least 1− (1 + κ)δ it holds

∀k ≥ 1 : Sk ≤ 2

√
Ṽkε(δ, k) +

1

2
Bε(δ, k),

where ε(δ, k) := log δ−1 + 2 log(1 + log2(Ṽk/B
2)).

Proof B.3.3 Denote v2
j := 2jB2, δj := (j∨1)−2δ, j ≥ 0, and define the nondecreasing sequence

of stopping times τ−1 = 1 and τj := min
{
k ≥ 1 : Vk > v2

j

}
for j ≥ 0. Define the events for
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j ≥ 0:

Aj :=

{
∃k ≥ 1 : Sk ≥

√
2v2
j log δ−1

j +
1

2
B log δ−1

j and Vk ≤ v2
j

}
,

A′j :=

{
∃k with τj−1 ≤ k < τj : Sk ≥ 2

√
Ṽkε(δ, k) +

1

2
Bε(δ, k)

}
.

From the definition of v2
j , δj, we have j = log2(v2

j /B
2) for j ≥ 1. For j ≥ 1, τj−1 ≤ k < τj

implies Ṽk = Vk, v2
j−1 = v2

j /2 < Ṽk ≤ v2
j , and further

log δ−1
j = log δ−1 + 2 log log2(v2

j /B
2) ≤ ε(δ, k).

Therefore it holds A′j ⊆ Aj. Furthermore, for j = 0, we have v2
0 = B2, δ0 = δ. Further, if k < τ0

it implies Vk < B2 and therefore Ṽk = B2, thus ε(δ, k) = log δ−1. Hence

A′0 ⊆
{
∃k with k < τ0 : Sk ≥ 2

√
B2 log δ−1

0 +
1

2
B log δ−1

0

}
⊆
{
∃k ≥ 1 : Sk ≥

√
2v2

0 log δ−1
0 +

1

2
B log δ−1

0 and Vk ≤ v2
0

}
= A0.

Therefore, since by (B.21) it holds P [Aj ] ≤ δj for all j ≥ 0:

P
[
∃k ≤ n : Sk ≥ 2

√
Vkε(δ, k) +Bε(δ, k)

]
= P

[ ⋃
j≥0

A′j

]
≤ P

[ ⋃
j≥0

Aj

]
≤ δ

∑
j≥0

(j ∨ 1)−2 ≤ 3δ.

Proof B.3.4 (Proof of Corollary B.3.1) It can be easily checked that ϕ(v, t) is increasing in t
(for v, t > 0). Thus Sn ≥ t⇔ ϕ(p, (Sn)+) ≥ ϕ(p, t). Since ϕ(v, 0) = 0, and limt→∞ ϕ(v, t) =∞,
it follows that for any δ ∈ (0, 1], there exists a unique real t(v, δ) such that ϕ(v, t(v, δ)) = − log δ.
It follows that (B.19) is equivalent to:

∀v > 0,∀δ ∈ (0, 1] : P [Av,δ] ≤ δ, (B.22)

where
Av,δ := {ϕ(v, (Sn)+) ≥ − log δ and Tn ≤ v for some n ≥ 1} .

Observe that ϕ(v, t) = vh
(
v+t
v

)
, where h is the function defined by (3.11). Since h(λ) ≥ 2(

√
λ−

1)2 from Lemma B.4.1, we deduce ϕ(v, t) ≥ 2(
√
v + t −

√
v)2 thus, whenever ϕ(v, (Sn)+) ≤

− log δ, we have: √
v + (Sn)+ ≤

√
v +

√
log δ−1

2
;

taking squares on both sides entails

Sn ≤
√

2v log δ−1 +
log δ−1

2
,

proving (B.21).
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B.4 Auxiliary results

Lemma B.4.1 The function h defined by (3.11) is increasing strictly convex from (1,∞) to
(0,∞), while h−1 is increasing strictly concave from (0,∞) to (1,∞). The functions h and h−1

satisfy the following upper/lower bounds:

2(
√
λ− 1)2 ≤ h(λ) ≤ (λ− 1)2/2, λ > 1

1 +
√

2y ≤ h−1(y) ≤ (1 +
√
y/2)2, y > 0

In particular, h−1(y) − 1 ≤
√

2y + O(y) as y → 0. In addition, for any c > 0, x ∈ (1,+∞) 7→
xh−1(c/x) is increasing.

Proof B.4.1 Clearly, h′ = log, which is positive and increasing on (1,∞). This gives the
desired property for h and h−1. Next, the bounds can be easily obtained by studying the functions
λ 7→ (λ − 1)2/2 − h(λ) and λ 7→ h(λ) − 2(

√
λ − 1)2. For the last statement, since h−1 is

strictly concave and h−1(0) = 1, we have that y ∈ (0,∞) 7→ (h−1(y)− 1)/y is decreasing. Since
y ∈ (0,∞) 7→ 1/y is also decreasing, this gives that y ∈ (0,∞) 7→ h−1(y)/y is decreasing. This
gives the last statement.

1.00 1.05 1.10 1.15 1.20 1.25 1.30

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

lambda

h(
la

m
bd

a)

0.00 0.01 0.02 0.03 0.04 0.05

1.
00

1.
10

1.
20

1.
30

y

hm
in

us
1(

y)

Figure B.1: Displaying h (left) and h−1 (right). Bounds of Lemma B.4.1 are displayed in blue.

Lemma B.4.2 (Wellner’s inequality, Inequality 2, page 415, with the improvement of Exercise 3 page 418 of Shorack and Wellner, 2009)
Let U1, . . . , Un be n ≥ 1 i.i.d. uniform random variables. For all λ ≥ 1, a ∈ [0, 1), we have

P

(
∃t ∈ [a, 1], n−1

n∑
i=1

1{Ui ≤ t}/t ≥ λ

)
≤ e−nah(λ)/(1−a),

for h(·) defined by (3.11).
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Lemma B.4.3 The KR constants in (3.34) and (3.44) satisfy, as a→∞,

log(1/δa)

a log(1 + 1−δB/aa

B )
= 1 +O

(
log(a)

a

)
;

log(1/δa)

a log(1 + log(1/δa)/a)
= 1 +O

(
log(a)

a

)
,

where δa = cδ/a, c = π2/6 and the O(·) depends only on the constants δ > 0 and B > 0.

B.5 Additional experiments

We reproduce here the figures of the numerical experiments in the top-k and preordered settings,
by adding the interpolated bounds. On each graph, the median of the generated interpolated
bound is marked by a star symbol, which is given in addition to the former boxplot (of the
non-interpolated bound). By doing so, we can evaluate the gain brought by the interpolation
operation in each case. Note that the interpolated bound is not computed for m ≥ 105 for
computational cost reasons.
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure B.2: Figure 3.1 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Top-k dense case (π0 = 0.5, µ = 1.5).

Figure B.3: Figure 3.2 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Top-k sparse case π0 = 1 − 0.5m−0.25, µ =

√
2 logm (left) π0 = 1 −

0.5m−0.55, µ =10 (right), α = 0.2.
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Non adaptive Adaptive

Figure B.4: Figure 3.3 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Top-k dense case with nonadaptive bounds (left) and adaptive bounds
(right) (π0 = 0.5, α = 0.2).

α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure B.5: Figure 3.5 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Preordered dense (β = 0) LF setting with LF procedure (s = 0.1α,
λ = 0.5).
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α = 0.05 α = 0.1

α = 0.15 α = 0.2

Figure B.6: Figure 3.6 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Preordered sparse (β = 0.25) LF setting with LF procedure (s = 0.1α,
λ = 0.5).

α = 0.15 α = 0.2

Figure B.7: Figure 3.7 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Pre-ordered dense (β = 0) knockoff setting with BC procedure (i.e., LF
procedure with s = λ = 0.5).
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α = 0.15 α = 0.2

Figure B.8: Figure 3.8 where we have superposed in each case the (median of the) interpolated
bounds (star symbols). Pre-ordered sparse (β = 0.25) knockoff setting with BC procedure (i.e.,
LF procedure with s = λ = 0.5).
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C.1 Auxiliary definitions and results

In this appendix we recall some definitions and results of stochastic ordering following the pre-
sentation in [SS], to which we also refer the reader for further details. We also recall a well-known
bound on the inverse moment of the Binomial distribution.

Definition C.1.1 (Stochastic order) Let X and Y be two random variables such that

P(X > x) ≤ P(Y > x) for all x ∈ (−∞,∞),

Then X is said to be smaller than Y in the usual stochastic order denoted by X 6st Y .

An equivalent characterization of the stochastic order is that X 6st Y ⇔ E[g(X)] ≤ E[g(Y )],
for all non-decreasing functions g : R→ R for which the expectations exist (see (1.A.7) in [SS])).

Definition C.1.2 (Convex order) Let X and Y be two random variables such that

E(φ(X)) ≤ E(φ(Y )) for all convex functions φ : R→ R,

provided the expectations exist. Then X is said to be smaller than Y in the convex order denoted
as X 6cx Y .

143
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The next results follows from the definition of convex ordering, see Chapter 3 of [SS].

Lemma C.1.1 (Theorem 3.A.24 in [SS]) Let X be a random variable with mean EX. De-
note the left (right) endpoint of the support of X by lX [uX ]. Let Z be a random variable such
that P {Z = lX} = (uX −EX) / (uX − lX) and P {Z = uX} = (EX− lX) / (uX − lX). Then

EX 6cx X 6cx Z

where EX denotes a random variable that takes on the value EX with probability 1 (the left
handside just restates Jensen’s inequality).

Lemma C.1.2 (Theorem 3.A.44 in [SS]) Let X and Y be two random variables with equal
means, density functions f and g, distribution functions F and G, and survival functions F̄ and
Ḡ, respectively. Denote by S−(a) the number of sign changes for function a. Then X ≤cx Y if
any of the following conditions hold:

S−(g − f) = 2 and the sign sequence is +,−,+;

S−(F̄ − Ḡ) = 1 and the sign sequence is +,−;

S−(G− F ) = 1 and the sign sequence is +,−.

Proposition C.1.1 (Theorem 3.A.12 d) in [SS]) Let X1, X2, . . . , Xm be a set of indepen-
dent random variables and let Y1, Y2, . . . , Ym be another set of independent random variables. If
Xi 6cx Yi for i = 1, 2, . . . ,m, then

m∑
j=1

Xj 6cx

m∑
j=1

Yj .

That is, the convex order is closed under convolutions.

Lemma C.1.3 (Example 3.A.48 in [SS]) Let X and Y be Bernoulli random variables with
parameters p and q, respectively, with 0 < p ≤ q ≤ 1. Then

X

p
≥cx

Y

q
.

Lemma C.1.4 (Inverse moment for the Binomial distribution) Let B1, . . . , Bk ∼ Bin(1, q).
Then E[1/(1 +

∑k
i=1Bi)] ≤ 1/((k + 1)q).

Proof C.1.1 See e.g. Benjamini et al. (2006).

C.2 Complements to Section 4.4.1

In the context of Gaussian one-sided testing described in Section 4.4.1, let m̂0(p1, . . . , pm) =
1
ν (1 +

∑m
i=1 g(pi)) ∈ F0. Define X0 ∼ g(pi) for i ∈ H0 and X1 ∼ g(pi) where i ∈ H1. Then we
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Figure C.1: Box plots for the difference between m̂PC,new
0 and m̂PC,ZZD

0 for point estimation
(left) and rejection numbers for the plug-in BH procedures (right) against a range of true m0 =
50, 100, . . . , 450.

have

Bias(m̂0) =
1

ν
E

(
1 +

∑
i∈H1

g(pi)

)
= (1 + (m−m0) ·EX1)/ν,

Var(m̂0) =
1

ν2
Var

(∑
i∈H0

g(pi) +
∑
i∈H1

g(pi)

)
= (m0 ·Var(X0) + (m−m0) ·Var(X1))/ν2, with

Var(X0) =

∫ 1

0

g(u)2du−
[∫ 1

0

g(u)du

]2

,

Var(X1) =

∫ 1

0

g(u)2f1(u)du−
[∫ 1

0

g(u)f1(u)du

]2

.

where f1(t) = exp
(
−µ · Φ−1(t)− µ2/2

)
denotes the density of the p-values under the alternative.

C.3 Complements to Section 4.4.2

Here we present some numerical results, comparing the performance of m̂PC,new
0 (see (4.8)) and

m̂PC,ZZD
0 (see (4.15)) for m = 500, where the correction factors C(500) = 1.011709 and s(500) =

98 are taken from Table S1 in Zeisel et al. (2011).
We first analyze the two estimators on simulated data in a one-sided Gaussian testing setting

where we observe realizations of independent rv’s X1, . . . , Xm0
∼ N(0, 1) and Xm0+1, . . . , X500 ∼

N(1.5, 1) for 1000 Monte-Carlo simulation runs and a varying range ofm0 = 50, 100, . . . , 450. We
obtain 500 p-values by testing the null hypotheses H0,i : µ = 0 vs. the alternatives H1,i : µ > 0

simultaneously for all i ∈ {1, . . . , 500} and calculate m̂PC,new
0 and m̂PC,ZZD

0 as well as the number
of rejections obtained from the plug-in BH procedure in (4.2) with α = 0.05.

Figure C.1 shows that over a wide range of true m0 values, m̂PC,new
0 and m̂PC,ZZD

0 yield compa-
rable results both w.r.t. the point estimates and for the number of rejections. In fact, m̂PC,new

0
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Figure C.2: Approximate probabilities P(m̂PC,new
0 > m̂PC,ZZD

0 ) for various values of true m0,
with fixed m = 500.

appears to be slightly more efficient than m̂PC,ZZD
0 .

Another comparison can be obtained when we assume that the signal under the alternative
is strong and that most hypotheses are nulls. In this case we have 2

∑m
i=1 pi ≈ 2

∑
i∈H0

pi =: S

so that we can use the Central Limit Theorem to quantify the probability that m̂PC,new
0 is more

conservative than m̂PC,ZZD
0

P(m̂PC,new
0 > m̂PC,ZZD

0 ) = P(S > m · C(m)− 2) ≈ Φ

(√
3

m0
· (m · C(m)− (m0 + 2))

)
.

Figure C.2 shows that this probability, for various values of the true m0, is quite small and even
under the complete null (m0 = 500) it is bounded by 1/3.

C.4 Additional Figures for simulated data of Section 4.4

We provide additional results on simulated data in the Gaussian one-sided testing setting de-
scribed in Section 4.4.1, with m = 10000 and µ = 1.5. Figure C.3 displays estimation results for
π0 over 1000 Monte-Carlo replications. They are in line with the analytical comparisons of the
MSE provided in Figure 4.1. Alongside, we also provide results on power, defined as the ratio of
the number of true discoveries to the number of alternatives, for the corresponding plug-in BH
(abbreviated in ABH for adaptive BH) procedures using each of the estimators, the raw BH and
oracle plug-in BH (using the true m0). The procedures are run for a fixed level α = 0.05. The
power enhancement among the different plug-in estimators’ is not striking except perhaps for
very small values of π0 were where we recover the same performance ranking as in Figure 4.1. For
larger values of π0, the differences in power is not perceptible anymore, every procedure behaves
poorly as there is less and less signal.
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Figure C.3: Estimation results (left panel) for m̂Storey
0 , m̂PC,new

0 , m̂Poly
0 (1, 1/2), and m̂Poly

0 (2, 1/2),
and power results (right panel) for the associated plug-in BH procedures on simulated data.

C.5 Upper and lower bounds for the inverse moment of the
uniform sum distribution

The Pounds and Cheng estimator is closely related to the sum of independent uniform random
variables. This distribution plays a role in various contexts and is also known as the Irwin-Hall
distribution (for more details, see Johnson et al. (1970)). As an auxiliary result, we give lower
and upper bounds for the inverse moment of this distribution.

Lemma C.5.1 (Inverse moments for Erlang distributions) Let E1, . . . , Ek ∼ E(1) be in-
dependent exponentially distributed random variables. Then E[1/

∑k
i=1Ei] ≤ 1/(k − 1).

Proof C.5.1 Since X =
∑k
i=1Ei is Gamma-distributed with shape α = k and inverse scale

parameter β = 1 then 1/X is Inverse-gamma distributed with mean β/(α− 1), see Gelman et al.
(2013).

Proposition C.5.1 (Inverse moment for sums of uniforms) For k ≥ 2 let U1, U2, . . . , Uk ∼
U [0, 1] iid. Then we have

2

k
≤ E

(
1∑k
i=1 Ui

)
≤ 2

k − 1
(C.1)

Proof C.5.2 Let E1, E2, . . . , Ek ∼ E(1) iid. From Theorems 3.A.24 and 3.A.46 in [SS] we have
for i = 1, . . . , , k

1 6cx 2Ui 6cx Ei

and since the convex ordering is preserved under convolutions (see [SS], Theorem 3.A.12.) we
obtain

k 6cx

k∑
i=1

2Ui 6cx

k∑
i=1

Ei.
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Together with the convexity of the mapping x 7→ 1/x on (0, 1) this yields

1

k
≤ E

(
1∑k

i=1 2Ui

)
≤ E

(
1∑k
i=1Ei

)
≤ 1

k − 1
,

where the last inequality follows from Lemma C.5.1.





Controlling False Discovery Proportion in Structured Data Sets
Abstract

The present work proposes new methodologies for controlling the False Discovery Proportion (FDP)
while accommodating different types of data structures arising from the underlying scientific context.
Since the seminal work of Benjamini and Hochberg (1995) (BH) introducing the FDP, multiple testing
procedures have found widespread applications across diverse domains. The BH procedure has facilitated
the identification of significant variables within large data sets, providing insights to scientific questions
in fields such as biology, medicine, or marketing research, by ensuring guarantees on the proportion of
false discoveries. However, the BH procedure has several limitations, among which e.g. the fact that it
is most effective for uniform p-values under the null; it is developed within a batch framework requiring
simultaneous availability of all p-values; the false discoveries control guarantee is only in expectation.
These limitations can lead to a range of unfavorable outcomes – spanning from reduced interpretability,
loss of statistical power, to potential inflation of the Type I error rate – particularly in contexts where
we perceive the data as possessing inherent "structure." This work aims to push back those limits
by providing new procedures and methodologies that adapt to settings where p-values can be discrete,
online, preordered, or weighted. This ultimately gives the practitioner more effective tools for identifying
significant variables in structured data sets as we illustrate in various numerical experiments.

Keywords: multiple testing, discrete p-values, online p-values, weighted p-values, preordered p-values,
(m)FDR control, FDP confidence bounds, plug-in FDR control

Résumé

Ce travail propose de nouvelles méthodologies pour contrôler la proportion de fausses découvertes (FDP)
tout en prenant en compte différentes types de structures de données résultant du contexte scientifique
sous-jacent. Depuis le travail fondamental de Benjamini and Hochberg (1995) (BH) introduisant le FDP,
les procédures de tests multiples ont trouvé une application dans de nombreux domaines. La procédure de
BH a facilité l’identification de variables significatives dans de grands ensembles de données, permettant
de répondre à des questions scientifiques dans des domaines tels que la biologie, la médecine ou le
marketing, tout en fournissant des garanties sur la proportion de fausses découvertes. Toutefois, la
procédure de BH présente plusieurs limites : elle est plus efficace pour des p-valeurs uniformes sous
l’hypothèse nulle ; elle est développée dans un cadre offline nécessitant la connaissance simultanée de
toutes les p-valeurs ; la garantie de contrôle des fausses découvertes est en espérance. Ces limitations
peuvent entraîner une perte de puissance, une réduction de l’interprétabilité, voire même une inflation
de l’erreur de Type I dans différents contextes où les données sont considérées comme "structurées". Ce
travail vise à combler ces lacunes en fournissant de nouvelles procédures et méthodologies qui s’adaptent
à des contextes structurels où les p-valeurs peuvent être discrètes, en ligne, pré-ordonnées ou pondérées.
Cela donne, in fine, au praticien des outils plus efficaces pour identifier les variables significatives dans
un ensemble de données structurées, comme nous l’illustrons dans diverses expériences numériques.

Mots clés : tests multiples, p-valeurs discrètes, p-valeurs en ligne, p-valeurs pondérées, p-valeurs ordon-
nées, contrôle du (m)FDR, bornes de confiance pour le FDP, contrôle du plug-in FDR
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