
Evaluating the effect of lung transplantation:
a case study in sequential emulated trials with

time-varying sources of bias

Iqraa Meah

CRESS, METHODS Team

Séminaire hebdomadaire, MIA, Paris-Saclay



Clinical context

(Q) How lung transplantation (TX) affects patients diagnosed with
cystic fibrosis (CF) ?

Disclaimer TX no longer practiced for CF

Source: www.pulmozyme.com/patient/about/what-is-cystic-fibrosis.html
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Presentation outline

(Q) How lung TX affects patients diagnosed with CF ?

Stake : clear methodology for practical case → build generic
theoretical model of emulated trial

• Randomized Control Trials (RCTs) vs observational studies

• Confounding and selection bias

• Sources of confounding and selection bias in our case

• Proposed methodology
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How to understand TX effect in practice ?

Randomized Control Trials (RCTs)

Random treatment assignment to individuals in population of
interest
Gold standard : protocol study allows to discard sources of
bias

Limits : costly/challenging or ethically/practically infeasible in some
contexts

Analysis from observational data

Data collected without epidemiological purpose
↪→ Observational data 6= experimental data
Difficulty : decipher causation effects from correlation effect
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Causal inference formalism
Potential outcomes and average treatment effect

For i ∈ {1 . . . n} individuals

• Ai ∈ {0, 1}: binary r.v for intervention/treatment

• Yi ∈ R : r.v for outcome of interest

• {Yi (Ai = 0),Yi (Ai = 1)}: couple of potential outcomes

Individual treatment effect : Yi (Ai = 1)− Yi (Ai = 0)
↪→ only one quantity available !

Average Treatment Effect (ATE)

ATE := E[Y (A = 1)]− E[Y (A = 0)]

Still causal quantity but can be estimated under certain conditions
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Identifiability assumptions

Stable Unit Treatment Value Assumption (SUTVA)

Yi = Yi (1)Ai + Yi (0)(1− Ai ) for all i ∈ {1, . . . , n}

↪→ consistency + no interference

Ceteris Paribus

Ai ⊥ {Yi (0),Yi (1)} for all i ∈ {1, . . . , n}

↪→ treatment assignment indep of POTENTIAL outcomes

E[Y | A = 1]− E[Y | A = 0]
= E[Y (1) | A = 1]− E[Y (0) | A = 0]
= E[Y (1)]− E[Y (0)] := ATE
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How to understand TX effect in practice ?
Key differences between RCTs and observational data

Randomized Control Trials (RCTs)

Random treatment assignment to individuals in population of
interest
SUTVA 3 Ceteris Paribus 3

Analysis from observational data

Observational data 6= experimental data
SUTVA ? Ceteris Paribus ?

↪→ Difficulty : decipher causation effect from correlation effects
↪→ Leads to biased conclusion
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Sources of bias
Confounding bias

Confounder affect outcome and treatment assignment !

A Y

X

A Y

X Confounder

E[Y (1) | A = 1]− E[Y (0) | A = 0]
= E[Y (1) | A = 1]− E[Y (0) | A = 0]
+ E[Y (0) | A = 1]− E[Y (0) | A = 1]︸ ︷︷ ︸

=0

= E[Y (1)− Y (0) | A = 1]︸ ︷︷ ︸
ATE on treated

+E[Y (0) | A = 1]− E[Y (0) | A = 0]︸ ︷︷ ︸
Bias
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Sources of bias
Confounding bias

Confounder affect outcome and treatment assignment !

A Y

X

A Y

X

No Confounding Bias With Confounding Bias

Control

Treated

Groups are
balanced

Confounding leads
to imbalance
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Sources of bias
Confounding bias

Confounder affect outcome and treatment assignment !

A Y

X

A Y

X Confounder

Ceteris Paribus: Ai ⊥ {Yi (0),Yi (1)} for all i ∈ {1, . . . , n}
↪→ guarantees both groups are comparable
↪→ hardly verified in observational data

Rather
Unconfoundedness : Ai ⊥ {Yi (0),Yi (1)} | Xi for all i ∈ {1, . . . , n}
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Sources of bias
Selection bias

Selection bias affect sample used for analysis → not representative
of target population

Y

C

X

Collider

Example : time spent on waiting list
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Types of bias in our observational study

Natural bias in data

• Confounding bias due to lung allocation process

Bias due to the analysis process

• Selection bias due to immortal time and informative censoring



Confounding bias
Lung Allocation Score (LAS) [?]

LAS goal : reduce waitlist deaths and futile TX

• Cox model to measures survival gain:
LAS ∼ post-TX survival - waitlist survival

• Graft attribution :
“large” LAS + distance perimeter to graft

LAS = main source of confounding bias
LAS varies in time → time-varying confounding
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Emulated Target Trial (ETT)
Study procedure from observational data [Hernán and Robins, 2016]

ETT → specification retrospective to data collection

• Specifying some elements requires subjective choices or
assumptions

• Design errors can introduce bias
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Selection bias
Immortal time

Immortal time : period during which outcome cannot occur
↪→ period between follow-up start and TX

Time
Follow-up start

Immortal Time
Treated

Control
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Selection bias
Informative censoring

Immortal Time

“treated”“control”
TX : patient censored from control arm

Selection bias :

• information removal at different times between controls and
treated

• to be TX you need to survive long enough on waiting list
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Final causal graph
Confounding bias

A

Y

X LAS

TX

Survival time
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Final causal graph
Confounding bias and selection bias

A
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Final causal graph
Confounding bias and selection bias throughout time
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Existing methods : Marginal Structural Models (MSM)
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Final assumptions we need to make

Stable Unit Treatment Value Assumption (SUTVA)

Yi = Yi (1)Ai + Yi (0)(1− Ai ) for all i ∈ {1, . . . , n}

Unconfoundedness

Ai ⊥ {Yi (0),Yi (1)} | Xi for all i ∈ {1, . . . , n}

Conditionally independent censoring

Ci ⊥ {Yi (0),Yi (1)} | Xi ,Ai for all i ∈ {1, . . . , n}

Positivity assumptions

0 < P(Ai = ai | Xi = xi ) < 1
0 < P(Ci > t | Xi = xi ,Ai = ai ) < 1
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Methodology



Emulated Target Trial (ETT)
Protocol element specification

• Eligibility criteria: Individuals≥ 18 years, listed for lung
TX only, diagnosed with CF.

• Treatment : Lung TX.
• Treatment assignment: Based on LAS.
• Start and end of follow-up: Starts at lung TX and

ends at event or (natural) censoring.
• Outcome : Survival time up to 2 years.
• Causal contrast: ATE, defined by difference between

areas under both survival curves (RMST).
• Statistical analysis: Survival estimator.

17



Methodology components
Sequential trials

SEQUENTIAL TRIALS 

MATCHING
IPCW 

(CENSORING CORRECTION)

Sequential trials

• Sequence of trials with different follow-up starts
• Account as treated only patient TX at the follow-up start
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Methodology components
Sequential trials

SEQUENTIAL TRIALS 

MATCHING
IPCW 

(CENSORING CORRECTION)

Sequential trials

• Sequence of trials with different follow-up starts
• Account as treated only patient TX at the follow-up start

↪→ simulates a no foreshadowing → reduces immortal time
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Methodology components
Correction for censoring

SEQUENTIAL TRIALS 

MATCHING
IPCW 

(CENSORING CORRECTION)

Transition “currently control” → “control” through censoring
↪→ artificial-informative censoring

IPCW for artificial-informative censoring

Weight uncensored individuals by 1
P(Ci>t|Xi )

↪→ Rebalances contributions : makes high censoring risk individual
account for censored individuals
→ Estimated using a Cox model
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Methodology components
Correction for censoring

SEQUENTIAL TRIALS 

MATCHING
IPCW 

(CENSORING CORRECTION)

Population for small trial : how to choose the control ? i.e. those
who are not TX at the current follow-up start

Matching on LAS

Match a control to a treated w.r.t to LAS value
→ get comparable groups
↪→ conditioning on confounding variable
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Methodology
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Database
United Network for Organ Sharing (UNOS)

Listing dataset:

• 2411 individuals diagnosed with CF from the US, 494 variables

• Data recorded over ∼ 10 years

• Contains key variables for survival analysis

LAS dataset:

• Longitudinal LAS records of varying lengths per individual

• Tracks patient health trajectories over time

→ Missing data filled using LME
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Results on UNOS database
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Biased results on UNOS database
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Conclusion



Limits

• No-interference in SUTVA not verified
How to take treatment availability into account ?

• LAS not only confounding factor :
e.g. socio-economic background ⇒ better healthcare
but not geographic information available

• No account for surgical advances
Break down analysis in time ?
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Survival ATE

Survival ATE : RMST difference between both groups

ATE := E[min(Y (1), τ)]− E[min(Y (0), τ)]

↪→ Area between both curves

Expected survival time restricted to predefined time τ

RMST(τ) = E[min(Y , τ)] =

∫ τ

0
S(t) dt

Y : the time-to-event
S(t): survival function, S(t) = P(Y > t)
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Next
Limit of sequence of trials ?

SEQUENTIAL TRIALS 

MATCHING
IPCW 

(CENSORING CORRECTION)

What’s the limit object of such sequential design ? Do we correctly
estimate the ATE ?

• Confounding bias → LAS
Solution : matching
OK [Rubin, 1997] : LAS ∼ propensity score →
unconfoundedness

• Selection bias ↔ immortal time and informative censoring
Solutions : sequential trials and IPCW correction
Dependencies between each trial . . .
↪→ a control can match a treated again at another time
↪→ a control can change group
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