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Multiplicity in scientific research

Molecular biology Neuroscience

Understand associations between 
genome and biological traits

Identify brain regions associated with 
cognitive function/disorder

Also in medicine for clinical trials, astrophysics...
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Multiplicity : statistical formalism

• Observe X ∼ P (unknown)
X matrix of gene expression

• For i ∈ {1, . . . ,m} test simultaneously null hypotheses
H0,i : “gene i is not related to cancer” vs
H1,i : “gene i is related to cancer”

• P-value based testing:
each H0,i is represented by valid p-value pi (X ) = pi ∈ (0, 1)

A valid p-value verifies

PX∼P(p ≤ u) ≤ u, for all u ∈ [0, 1], when P satisfies H0
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Multiple Testing (MT)

−→ Goal: make interesting discoveries while limiting # errors

False  discovery

True discovery

contains true nulls

contains true alternatives

Rejection set

(unknown) 

(unknown)
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Uncorrected MT

−→ Testing all H0,i at same level α ∈ (0, 1)

Individual Type I error controlled

P(pi (X ) ≤ α) ≤ α for all α ∈ (0, 1), and i ∈ H0

Because p-values are valid

Overall nb errors in expectation explodes

Under global null, with m ≥ 1 uniform p-values,
E
[∑m

j=1 1pj≤α
]

= mα
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MT error metric

MT ≈ assessing overall quality of decisions taken
−→ Notion of Type I error accounting for multiplicity

False Discovery Proportion (FDP) [Benjamini and Hochberg, 1995]

FDP =
#false discoveries

#discoveries

• Random quantity, thus either
−→ control expectation : False Discovery Rate (FDR)
−→ control tail distribution : provide confidence bounds
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FDP related risks

FDR control : prescribe rejection set

Design procedure R : [0, 1]m → P({1, . . . ,m}) s.t. for any α ∈
(0, 1)

FDR := E[FDP(R)] ≤ α

FDP confidence bounds : evaluate selection sets

For R ∈ P({1, . . . ,m}), provide upper bound FDP(R) s.t

P(FDP(R) ≤ FDP(R)) ≥ 1− δ,

for some δ ∈ (0, 1)

Goal: control + power
↪→ few Type II error for FDR
↪→ sharpness for confidence bounds
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P-value structures

−→ Classical methods derived for “canonical setting”

Batch of p-values Uniform under the null
Ascending order in

 BH procedure 

• “Structured” p-value ≈ when canonical feature not met
↪→ rethink/adapt the methods

• Structure defined upon
availability , ordering , and marginal distribution
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P-value structures
Informal presentation

MARGINAL DISTRIBUTION

ORDER

AVAILABILITY

CANONICAL SETTING 
ONLINE

timeTT-1 T+1

Batch of p-values One p-value at a time

Uniform under the null

Ascending order in
 BH procedure 
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Presentation outline

Focus : combination of p-value structures + one MT goal

Chapter 2: Online multiple testing with super-uniformity reward
−→ Online, discrete
−→ Online mFDR control

Chapter 3: Consistent FDP bounds
−→ Preordered (knockoff) p-values
−→ Uniform FDP confidence bounds

Chapter 4: Unified class of π0 estimators with plug-in FDR control
−→ Discrete p-values
−→ Adaptive FDR control

9



Presentation outline

Focus : combination of p-value structures + one MT goal

Chapter 2: Online multiple testing with super-uniformity reward
−→ Online, discrete
−→ Online mFDR control

Chapter 3: Consistent FDP bounds
−→ Preordered (knockoff) p-values
−→ Uniform FDP confidence bounds

Chapter 4: Unified class of π0 estimators with plug-in FDR control
−→ Discrete p-values
−→ Adaptive FDR control

9



Presentation outline

Focus : combination of p-value structures + one MT goal

Chapter 2: Online multiple testing with super-uniformity reward
−→ Online, discrete
−→ Online mFDR control

Chapter 3: Consistent FDP bounds
−→ Preordered (knockoff) p-values
−→ Uniform FDP confidence bounds

Chapter 4: Unified class of π0 estimators with plug-in FDR control
−→ Discrete p-values
−→ Adaptive FDR control

9



Presentation outline

Focus : combination of p-value structures + one MT goal

Chapter 2: Online multiple testing with super-uniformity reward
−→ Online, discrete
−→ Online mFDR control

Chapter 3: Consistent FDP bounds
−→ Preordered (knockoff) p-values
−→ Uniform FDP confidence bounds

Chapter 4: Unified class of π0 estimators with plug-in FDR control
−→ Discrete p-values
−→ Adaptive FDR control

9



Online multiple testing with super-uniformity reward
Sebastian Döhler, Iqraa Meah, Etienne Roquain

[q] arXiv:2110.01255, in revision for EJS



Online multiple testing setting

Time

Null Hypothesis            Decision

Ft−1 = σ
(
1p1≤α1 , . . . , 1pt−1≤αt−1

)
represents past

Assumption

P (pt ≤ u | Ft−1) ≤ u a.s. for all u ∈ [0, 1], with t ∈ H0

↪→ Valid even if hypothesis stated upon past decisions
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Online Multiple Testing (OMT)
Formalism

→ Goal: procedure with online mFDR ≤ α

Online error metric
For a procedure A = {αt , t ≥ 1}

mFDR(A) := sup
t≥1

E[|H0 ∩ R(t)|]
E[1 ∨ |R(t)|]

H0 set of true nulls
R(t) = {1 ≤ i ≤ t : pi ≤ αi} rejection set up to time t ≥ 1

• Tool : FDP estimation

FDP(t) =

∑
j≤t,j∈H0

1pj≤αj
1∨|R(t)| ≈

∑
j≤t,j∈H0

αj

1∨|R(t)| ≤
∑

j≤t αj

1∨|R(t)| := F̂DP(t)
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OMT procedure

Lemma [Ramdas et al., 2017]

For A = {αt , t ≥ 1} s.t. ∀t ≥ 1,
∑

j≤t
αj ≤ α(1 ∨ |R(t)|), mFDR(A) ≤ α

• Standard procedure : Level based On Recent Discoveries (LORD)
[Javanmard and Montanari, 2018, Ramdas et al., 2017]

• Baseline strategy: Generalized α-investing (GAI) [Foster and Stine, 2008]
↪→ α wealth to pay errors

Current 
wealth

Current 
wealth

Current 
wealth

spends

reward

updated
wealth

updated
wealth

Current 
wealth

Current 
wealth

Current 
wealth

spends

reward

updated
wealth

updated
wealth

Current 
wealth

Current 
wealth

Current 
wealth

spends

reward

updated
wealth

updated
wealth
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Super-uniformity

Classical setting
Adaptivity [Ramdas et al., 2018]
Asynchronous setting
[Zrnic et al., 2021]
Power study
[Chen and Arias-Castro, 2021]
...

Uniform under the null

timeTT-1 T+1

One p-value at a time

Our focus

timeTT-1 T+1

One p-value at a time DISCRETE
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Super-uniformity

Super-uniformity

Ft(u) = P (pt ≤ u | Ft−1) ≤ u

a.s. for all u ∈ [0, 1], with t ∈ H0

Equality → Uniform
Strict inequality → over-conservativeness

Ft(αt) := P(pt ≤ αt | Ft−1) ≤ α̃t < αt︸ ︷︷ ︸
over-conservativeness

−→ Could be coped with Ft if known
↪→ Typical case of discrete p-values : ρt = αt − Ft(αt) explicit
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Discrete p-values

Ft( t)

t

t = t− Ft(αt)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

• Fisher Exact Tests (FETs) for association studies
↪→ X : gene knocked out or not

Y : change phenotype or not

Y = 1 Y = 0 Total
X = 0 n11 n12 n1·
X = 1 n21 n22 n2·
Total n·1 n·2 n

• Also Poisson, Binomial tests...
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Contribution
Super-uniformity reward

−→ Re-incorporate ρt = αt − Ft(αt) as reward

Theorem [Döhler, M. and Roquain (2021)]

For any procedure A0 = (α0
t , t ≥ 1) satisfying almost surely, for all t ≥ 1,∑
1≤j≤t

α0
j ≤ α (1 ∨ R(t)),

the rewarded procedure A = (αt , t ≥ 1) defined by

αt = α0
t +

∑
1≤j≤t−1

γ′t−j(αj − Fj(αj))

with γ′ = (γ′t)t≥1 sequence of non-negative values summing to one

• controls online mFDR at level α under conditional validity
• uniformly dominates the base procedure A0

Proof intuition : F̂DP(t) =
∑

j≤t Fj (αj )

1∨|R(t)| ≤
∑

j≤t αj

1∨|R(t)| tighter estimate
16
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Numerical results
Application on real data

• International Mice Phenotyping Consortium (IMPC) dataset
↪→ Study genotype effect on phenotype

Is gene X related to eye color ?
↪→ In vivo study with gene knockout

• Benchmark dataset analyzed in online literature

• Analyzed using FETs

mFDR procedures LORD ρLORD ALORD ρALORD
# discoveries (male) 882 972 972 1041

# discoveries (female) 839 946 966 1046
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Perspectives

Extensions

• Online p-value weighting using rewarding method
• Control online mFDR at stopping times
• FDR control by enforcing monotonous reward across time

Perspectives

• Power study
→ Optimal smoothing sequence (γ′t)t≥1
→ Super-uniformity reward optimal for

∑
j≤t

Fj(αj) ≤ α(1 ∨ |R(t)|) ?

18
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Consistent false discovery proportion bounds
Gilles Blanchard, Iqraa Meah, Etienne Roquain

[q] arXiv:2306.07819, submitted



FDP confidence bounds
Quick background

Aim recall

For R ∈ P({1, . . . ,m}), provide upper bound FDP(R) s.t

P(FDP(R) ≤ FDP(R)) ≥ 1− δ,

for some δ ∈ (0, 1)

More informative = stronger statement than expectation

Posthoc confidence bounds

Design bounding function FDP valued in (0, 1) s.t

P(∀R ∈ P({1, . . . ,m}),FDP(R) ≤ FDP(R)) ≥ 1− δ,

for some δ ∈ (0, 1)

+ More analysis freedom [Genovese and Wasserman, 2006]
[Goeman and Solari, 2011]
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Confidence bounds on a path
Focus on couple (FDR procedure, FDP bound)

Gain accuracy for set outputted by FDR procedure ?

Confidence bounds on a path [Katsevich and Ramdas, 2020]

Design bounding function FDP valued in (0, 1) s.t

P(∀Rk ∈ Π,FDP(Rk) ≤ FDP(Rk)) ≥ 1− δ,

for some δ ∈ (0, 1)

Π = path → underlying setting: Top-k, Pre-ordered, Online

Martingale inequalities → FDP(Rk) = factor · F̂DP(Rk) + remainder

For Rk̂α
output of FDR procedure at level α, FDP(Rk̂α

) ≈ α ?
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Consistency for couple (FDR procedure, FDP bound)
Formalism

Consistency [Blanchard, M. and Roquain (2023)]

∀ε > 0, ∀α0 ∈ (0, 1),

lim
m→∞

P(m)

(
sup

α∈[α0,1)

{
FDPα − α

}
≥ ε

)
= 0.

with FDPα = FDP(Rk̂α
)

where Rk̂α
output of FDR procedure at level α,

and P(m) sequence of standard models

↪→ Today focus on (Knockoff, FDP bound)

21



Consistency for couple (FDR procedure, FDP bound)
Formalism

Consistency [Blanchard, M. and Roquain (2023)]

∀ε > 0, ∀α0 ∈ (0, 1),

lim
m→∞

P(m)

(
sup

α∈[α0,1)

{
FDPα − α

}
≥ ε

)
= 0.

with FDPα = FDP(Rk̂α
)

where Rk̂α
output of FDR procedure at level α,

and P(m) sequence of standard models

↪→ Today focus on (Knockoff, FDP bound)

21



Pre-ordered path

Pre-ordered path : Rk = {π(i) : 1 ≤ i ≤ k , pπ(i) ≤ s}
↪→ s ∈ (0, 1] signal zone threshold 6

11
7

12
4

2
10

5

9 8

14
313

1

F̂DP(Rk) = F̂DPk = s
1−λ

1+
∑k

i=1 1{pπ(i)>λ}
1∨

∑k
i=1 1{pπ(i)≤s}

[Lei and Fithian, 2016]

↪→ λ ∈ (0, 1] error zone threshold

FDR procedure look for largest k̂α such that F̂DPk̂α
≤ α

Encompasses [Barber and Candès, 2015] Knockoff procedure
binary p-values and λ = s = 1/2
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Pre-ordered path : Rk = {π(i) : 1 ≤ i ≤ k , pπ(i) ≤ s}
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Proposed bounds

KR bound [Katsevich and Ramdas, 2020]

FDPKR
k = 1 ∧

 log(1/δ)

a log(1+ 1−δB/a
B

)

a+ s
1−λ

∑k
i=1 1{pπ(i) > λ}

1 ∨
∑k

i=1 1{pπ(i) ≤ s}


with a ≥ 1 free parameter, B = s/(1− λ), and λ ≥ s.

Default choice a = 1 suggested by KR.

KR-U bound (new) [Blanchard, M. and Roquain (2023)]

FDPKR-U
k = 1 ∧ min

a∈N\{0}

 log(1/δa)

a log(1+ 1−δB/aa
B

)

a+ s
1−λ

∑k
i=1 1{pπ(i) > λ}

1 ∨
∑k

i=1 1{pπ(i) ≤ s}

 ,

with δa = δ/(κa2), a ≥ 1, for B = s/(1− λ), κ = π2/6.

→ Our proposal : KR + union bound over a ∈ N\{0}
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Consistency

FDPα = FDP(Rk̂α
) with Rk̂α

output of Knockoff at level α ∈ (0, 1)
↪→ FDP(Rk̂α

) = factor · α+ remainder/r̂α, with r̂α = # rejections

KR bound

FDP
KR
α = 1 ∧

(
log(1/δ)

log(1+ 1−δB
B

)
(α+ 1/(1 ∨ r̂α))

)

↪→ Incompressible constant → no consistency

KR-U bound

FDP
KR-U
α = 1 ∧min1≤a≤1∨r̂α

{
log(1/δa)

a log(1+ 1−δB/aa
B

)

(α+ a/(1 ∨ r̂α))

}

↪→ consistent when r̂α large enough in a probabilistic sense
Proof intuition : Union bound allows a to be large slowly enough w.r.t r̂α
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Illustration
[Lei and Fithian, 2016] VCT model

• Local alternative π(i) = 1/2+ (0 ∨ 1/2( z−i
z−1 )),

↪→ z > 1 tells how slowly probability of observing signal deteriorates

• Binary p-values :
Under the null pi = 1/2 or 1 with equal probability.
Under the alternative, pi = 1/2 with probability 0.9 and pi = 1 otherwise.
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Outlook

Other covered settings:

• top-k: consistency for (BH, FDP bounds)
Uniform improvement by π0-estimation

• online : consistency for (LORD, FDP bounds)
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A unifying class of π0 estimators with plug-in FDR control
Sebastian Döhler, Iqraa Meah

[q] arXiv:2307.13557, In revision for Biometrical Journal



Unifying class of π0 estimators with plug-in FDR control
m0 = |H0| #true nulls π0 = m0

m
proportion of true nulls

FDR(BHα) = π0α� α if dense signal
FDR(BHα/π0) = α nice but π0 unknown
FDR(BHα/π̂0) ≤

?
α

↪→ sufficient condition for plug-in FDR control : [Benjamini et al., 2006]
[Blanchard and Roquain, 2009] (BR)

Settings of interest

DISCRETE
Batch of p-values

OR

UNIFORM
Aim : address

1 (Uniform) Anti-conservativeness
2 (Discrete) Bias inflation

Contribution: general class of estimators verifying (BR) condition
↪→ encompasses existing + new estimators
↪→ allows adaptation to discreteness

Perspective : discrete BH with discrete (BR) condition
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Conclusion



Conclusion

General perspectives :

• Power studies
For optimal parameters
↪→ challenging in online and discrete setting

• Relax independence
E-value based testing → discrete E-values ?

28



Conclusion

Thank you for your attention !
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Online p-value weighting

P-value weighting : ease rejection when confident

Test on p̃t = pt/ wt → prior knowledge
⇔ Test pt with αtwt

Well studied offline → (wt)1≤t≤m unit mean, not obvious online
Only solution [Ramdas et al., 2017] → no rescaling (called wGAI)

Current 
wealth

Current 
wealth

Current 
wealth

spends

reward

updated
wealth

updated
wealth

wt inflates current investment if confident in rejection
→ preserve wealth but less rejection reward to keep mFDR control

1



Online p-value weighting using super-uniformity
[Döhler, M. and Roquain (2021)]

Idea: enforce super-uniformity with wt ∈ (0, 1)
↪→ Use only part of αt if no confidence in rejection
→ re-incorporate what was not used

Current 
wealth

Current 
wealth

Current 
wealth

spends

reward

updated
wealth

updated
wealth

Proof of concept on “airway” data set, with weights taken from
[Ignatiadis et al., 2016]
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Monotonicity of online procedure

αt is a coordinate-wise nondecreasing function of past decisions:

Monotonicity

if R̃i ≥ Ri for all i ≤ t − 1, then we have
αt(R̃1, . . . , R̃t−1) ≥ αt(R1, . . . ,Rt−1)

Rewarded procedures non monotone

Enforce monotonicity : look for “least favorable” super-uniformity
reward over all possible past rejection sequences → intractable

3



Estimator F̂DP with adaptivity

Estimator F̂DP with adaptivity

F̂DPλ(T ,A) =
αT +

∑
1≤t≤T−1,

pt≥λ
Ft(αt)

(1− λ)(1 ∨ R(T ))
,

with λ ∈ [0, 1)

→ Intuition: count only for p-values above λ because these are
potentially true nulls

4



Stopping time control for rewarded procedures

Define the stopping time τ as any r.v taking values in {1, 2, . . . }
with

• τ < +∞ almost surely;

• {τ = t} ∈ Ft for all t ≥ 1.

Stopping time control

Consider a stopping time τ as above. For any procedure
A = (αt , t ≥ 1), if for some λ ∈ [0, 1) we have
supT≥1 F̂DPλ(A) ≤ α then mFDRτ (A) ≤ α.

→ Proof:

Mt =
∑

i≤t,i∈H0

(
1 {pi ≤ αi} −

1 {pi > λ}
1− λ

Fi (αi )

)
, t ≥ 1

is a super-martingale.
5



Background
Online procedures

Online Bonferroni

αt = αγt ∀t ≥ 1

with {γt}t≥1 a nonnegative sequence summing to one

• Controls online FWER ⇒ controls online mFDR

• αt decrease quickly → low power, no discoveries in long run

• Idea : scale budget by # rejections
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Background
Online procedures

Level based On Recent Discoveries (LORD)
[Javanmard and Montanari, 2018, Ramdas et al., 2017]

αt = W0γt + (α−W0)γt−τ1 + α
∑
j≥2

γt−τj ∀t ≥ 1

with W0 ∈ [0, α] an initial wealth, and τj time of the j th discovery
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Background
Online procedures

Spending procedure for FWER
control

α1 = αγ1

α2 = αγ2

α3 = αγ3
...

Investing procedures for mFDR
control

α1 = W0γ1

α2 = W0γ2 rejection
α3 = W0γ3 + (α−W0)γ1

α4 = W0γ4 + (α−W0)γ2 rejection
α5 = W0γ5 + (α−W0)γ3 + αγ1

...
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Discrete p-values
FETs

• Fisher Exact Tests (FETs) for association studies
↪→ X : gene knocked out or not

Y : change phenotype or not

Y = 1 Y = 0 Total
X = 0 n11 n12 n1·
X = 1 n21 n22 n2·
Total n·1 n·2 n

9



Numerical results on simulated data
Discreteness level

procedure
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Numerical results on simulated data
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Numerical results on simulated data
Signal strength
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Numerical results on simulated data
Signal position

procedure
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Discrete p-values
Permutation test

• Permutation tests

p(X ) = (B + 1)−1

(
1 +

B∑
b=1

1 {S (X σb) ≥ S(X )}

)

P(p(X ) ≤ s) ≤ F (s) =
b(B + 1)sc

B + 1

13



Numerical results on simulated data
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Unifying class of π0 estimators with plug-in FDR control
Bias inflation

Bias(m̂Storey
0 ) =

1
1− λ

+
1

1− λ

∑
i∈H0

E[1pi>λ] +
∑
i∈H1

E[1pi>λ]

−m0

• Under Uniform setting

1
1− λ

+
1

1− λ

∑
i∈H1

E[1pi>λ]


• Under Discrete setting

1
1− λ

+
1

1− λ

∑
i∈H0

1− Fi (λ) +
∑
i∈H1

E[1pi>λ]

−m0
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