Controlling false discovery proportion in structured data sets

PhD defense, November 30 2023

Iqraa Meah

Multiplicity in scientific research

Neuroscience

Also in medicine for clinical trials, astrophysics...

Multiplicity : statistical formalism

• Observe $X \sim P$ (unknown)

X matrix of gene expression

- For i ∈ {1,...,m} test simultaneously null hypotheses H_{0,i}: "gene i is not related to cancer" vs H_{1,i}: "gene i is related to cancer"
- *P*-value based testing: each $H_{0,i}$ is represented by valid *p*-value $p_i(X) = p_i \in (0,1)$

A valid *p*-value verifies

 $\mathbb{P}_{X \sim P}(p \leq u) \leq u$, for all $u \in [0, 1]$, when P satisfies H_0

Multiple Testing (MT)

 \longrightarrow Goal: make interesting discoveries while limiting # errors

 $\begin{array}{c} {\cal H}_0 \ {\rm (unknown)} \\ {\rm contains \ true \ nulls} \ \ {\sf X} \end{array}$

 \mathcal{H}_1 (unknown) contains true alternatives ullet

- True discovery
- $\langle X \rangle$ False discovery

Uncorrected MT

 \longrightarrow Testing all $H_{0,i}$ at same level $\alpha \in (0,1)$

Individual Type I error controlled

 $\mathbb{P}(p_i(X) \leq \alpha) \leq \alpha$ for all $\alpha \in (0, 1)$, and $i \in \mathcal{H}_0$

Because *p*-values are valid

Overall nb errors in expectation explodes

Under global null, with $m \ge 1$ uniform *p*-values, $\mathbb{E}\left[\sum_{j=1}^{m} 1_{p_j \le \alpha}\right] = m\alpha$

Uncorrected MT

 \longrightarrow Testing all $H_{0,i}$ at same level $\alpha \in (0,1)$

Individual Type I error controlled

 $\mathbb{P}(p_i(X) \leq \alpha) \leq \alpha$ for all $\alpha \in (0, 1)$, and $i \in \mathcal{H}_0$

Because *p*-values are valid

Overall nb errors in expectation explodes

Under global null, with $m \ge 1$ uniform *p*-values, $\mathbb{E}\left[\sum_{j=1}^{m} 1_{p_j \le \alpha}\right] = m\alpha$

MT error metric

 $\label{eq:MT} \begin{array}{l} \mathsf{MT} \approx \texttt{[assessing overall quality]} \text{ of decisions taken} \\ \longrightarrow \mathsf{Notion of Type I error accounting for multiplicity} \end{array}$

False Discovery Proportion (FDP) [Benjamini and Hochberg, 1995]

 $\mathsf{FDP} = \frac{\#\mathsf{false \ discoveries}}{\#\mathsf{discoveries}}$

- Random quantity, thus either
 - \rightarrow control expectation : False Discovery Rate (FDR)
 - \longrightarrow control tail distribution : provide confidence bounds

 $\label{eq:MT} \begin{array}{l} \mathsf{MT} \approx \texttt{assessing overall quality} & \mathsf{of decisions taken} \\ \longrightarrow \mathsf{Notion of Type I error accounting for multiplicity} \end{array}$

False Discovery Proportion (FDP) [Benjamini and Hochberg, 1995]

 $\mathsf{FDP} = \frac{\#\mathsf{false \ discoveries}}{\#\mathsf{discoveries}}$

- Random quantity, thus either
 - \rightarrow control expectation : False Discovery Rate (FDR)
 - \longrightarrow control tail distribution : provide confidence bounds

 $\label{eq:MT} \begin{array}{l} \mathsf{MT} \approx \texttt{assessing overall quality} & \mathsf{of decisions taken} \\ \longrightarrow \mathsf{Notion of Type I error accounting for multiplicity} \end{array}$

False Discovery Proportion (FDP) [Benjamini and Hochberg, 1995]

 $\mathsf{FDP} = \frac{\#\mathsf{false \ discoveries}}{\#\mathsf{discoveries}}$

- Random quantity, thus either
 - \rightarrow control expectation : False Discovery Rate (FDR)
 - \longrightarrow control tail distribution : provide confidence bounds

FDP related risks

FDR control : prescribe rejection set

Design procedure $R : [0,1]^m \to \mathcal{P}(\{1,\ldots,m\})$ s.t. for any $\alpha \in (0,1)$

$$\mathsf{FDR} := \mathbb{E}[\mathsf{FDP}(R)] \le \alpha$$

FDP confidence bounds : evaluate selection sets

For $R \in \mathcal{P}(\{1, \ldots, m\})$, provide upper bound $\overline{FDP}(R)$ s.t

 $\mathsf{P}(\mathsf{FDP}(R) \le \overline{\mathsf{FDP}}(R)) \ge 1 - \delta,$

for some $\delta \in (0, 1)$

Goal: control + power

→ few Type II error for FDR
 → sharpness for confidence bounds

FDP related risks

FDR control : prescribe rejection set

Design procedure $R : [0,1]^m \to \mathcal{P}(\{1,\ldots,m\})$ s.t. for any $\alpha \in (0,1)$

```
\mathsf{FDR} := \mathbb{E}[\mathsf{FDP}(R)] \leq \alpha
```

FDP confidence bounds : evaluate selection sets

For $R \in \mathcal{P}(\{1, ..., m\})$, provide upper bound $\overline{\text{FDP}}(R)$ s.t

 $\mathsf{P}(\mathsf{FDP}(R) \leq \overline{\mathsf{FDP}}(R)) \geq 1 - \delta,$

for some $\delta \in (0, 1)$

Goal: control + power

→ few Type II error for FDR
 → sharpness for confidence bounds

FDP related risks

FDR control : prescribe rejection set

Design procedure $R : [0,1]^m \to \mathcal{P}(\{1,\ldots,m\})$ s.t. for any $\alpha \in (0,1)$

```
\mathsf{FDR} := \mathbb{E}[\mathsf{FDP}(R)] \leq \alpha
```

FDP confidence bounds : evaluate selection sets

For $R \in \mathcal{P}(\{1, ..., m\})$, provide upper bound $\overline{\text{FDP}}(R)$ s.t

 $\mathsf{P}(\mathsf{FDP}(R) \leq \overline{\mathsf{FDP}}(R)) \geq 1 - \delta,$

for some $\delta \in (0, 1)$

Goal: control + power

 \hookrightarrow few Type II error for FDR \hookrightarrow sharpness for confidence bounds

\longrightarrow Classical methods derived for "canonical setting"

"Structured" *p*-value ≈ when canonical feature not met
 → rethink/adapt the methods

• Structure defined upon availability, ordering, and marginal distribution

 \longrightarrow Classical methods derived for "canonical setting"

"Structured" *p*-value ≈ when canonical feature not met
 → rethink/adapt the methods

• Structure defined upon availability, ordering, and marginal distribution

Informal presentation

Informal presentation

Informal presentation

Focus : combination of *p*-value structures + one MT goal

Chapter 2: Online multiple testing with super-uniformity reward → Online, discrete

 \longrightarrow Online mFDR control

Chapter 3: Consistent FDP bounds → Preordered (knockoff) *p*-values → Uniform FDP confidence bounds

Chapter 4: Unified class of π_0 estimators with plug-in FDR control \longrightarrow Discrete *p*-values

 \longrightarrow Adaptive FDR control

Focus : combination of *p*-value structures + one MT goal

Chapter 2: Online multiple testing with super-uniformity reward → Online, discrete

 \longrightarrow Online mFDR control

Chapter 3: Consistent FDP bounds \longrightarrow Preordered (knockoff) p-values \longrightarrow Uniform FDP confidence bounds

Chapter 4: Unified class of π_0 estimators with plug-in FDR control \longrightarrow Discrete *p*-values \land Adaptive EDR control

Focus : combination of p-value structures + one MT goal

 $\longrightarrow \mathsf{Online}\ \mathsf{mFDR}\ \mathsf{control}$

Chapter 3: Consistent FDP bounds

- \longrightarrow Preordered (knockoff) *p*-values
- \longrightarrow Uniform FDP confidence bounds

Chapter 4: Unified class of π_0 estimators with plug-in FDR control \longrightarrow Discrete *p*-values \longrightarrow Adaptive EDR control

Focus : combination of *p*-value structures + one MT goal

Chapter 2: Online multiple testing with super-uniformity reward → Online, discrete

 \longrightarrow Online mFDR control

Chapter 3: Consistent FDP bounds \longrightarrow Preordered (knockoff) *p*-values \longrightarrow Uniform FDP confidence bounds

Chapter 4: Unified class of π_0 estimators with plug-in FDR control

- \longrightarrow Discrete *p*-values
- \longrightarrow Adaptive FDR control

Online multiple testing with super-uniformity reward Sebastian Döhler, Iqraa Meah, Etienne Roquain

[B] arXiv:2110.01255, in revision for EJS

Online multiple testing setting

 $\mathcal{F}_{t-1} = \sigma\left(1_{p_1 \leq lpha_1}, \dots, 1_{p_{t-1} \leq lpha_{t-1}}
ight)$ represents past

Assumption

 $\mathbb{P}\left(p_t \leq u \mid \mathcal{F}_{t-1}
ight) \leq u$ a.s. for all $u \in [0,1]$, with $t \in \mathcal{H}_0$

 \hookrightarrow Valid even if hypothesis stated upon past decisions

Online multiple testing setting

$$\mathcal{F}_{t-1} = \sigma\left(1_{p_1 \leq lpha_1}, \dots, 1_{p_{t-1} \leq lpha_{t-1}}
ight)$$
 represents past

Assumption

 $\mathbb{P}\left(p_t \leq u \mid \mathcal{F}_{t-1}
ight) \leq u$ a.s. for all $u \in [0,1]$, with $t \in \mathcal{H}_0$

 \hookrightarrow Valid even if hypothesis stated upon past decisions

Online Multiple Testing (OMT) Formalism

 \rightarrow Goal: procedure with online mFDR $\leq \alpha$

Online error metric

For a procedure $\mathcal{A} = \{ \alpha_t, t \geq 1 \}$

$$\mathsf{mFDR}(\mathcal{A}) := \sup_{t \geq 1} rac{\mathbb{E}[|\mathcal{H}_0 \cap R(t)|]}{\mathbb{E}[1 \lor |R(t)|]}$$

 \mathcal{H}_0 set of true nulls $R(t) = \{1 \le i \le t : p_i \le \alpha_i\}$ rejection set up to time $t \ge 1$

• Tool : FDP estimation $FDP(t) = \frac{\sum_{j \le t, j \in \mathcal{H}_0} 1_{p_j \le \alpha_j}}{1 \vee |R(t)|} \approx \frac{\sum_{j \le t, j \in \mathcal{H}_0} \alpha_j}{1 \vee |R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{1 \vee |R(t)|} := \widehat{FDP}(t)$

Online Multiple Testing (OMT) Formalism

 \rightarrow Goal: procedure with online mFDR $\leq \alpha$

Online error metric

For a procedure $\mathcal{A} = \{ \alpha_t, t \geq 1 \}$

$$\mathsf{mFDR}(\mathcal{A}) := \sup_{t \geq 1} rac{\mathbb{E}[|\mathcal{H}_0 \cap R(t)|]}{\mathbb{E}[1 \lor |R(t)|]}$$

 \mathcal{H}_0 set of true nulls $R(t) = \{1 \le i \le t : p_i \le \alpha_i\}$ rejection set up to time $t \ge 1$

• Tool : FDP estimation $FDP(t) = \frac{\sum_{j \le t, j \in \mathcal{H}_0} \mathbf{1}_{p_j \le \alpha_j}}{\mathbf{1} \vee |R(t)|} \approx \frac{\sum_{j \le t, j \in \mathcal{H}_0} \alpha_j}{\mathbf{1} \vee |R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{\mathbf{1} \vee |R(t)|} := \widehat{FDP}(t)$

Online Multiple Testing (OMT) Formalism

 \rightarrow Goal: procedure with online mFDR $\leq \alpha$

Online error metric

For a procedure $\mathcal{A} = \{ \alpha_t, t \geq 1 \}$

$$\mathsf{mFDR}(\mathcal{A}) := \sup_{t \geq 1} rac{\mathbb{E}[|\mathcal{H}_0 \cap R(t)|]}{\mathbb{E}[1 \lor |R(t)|]}$$

 \mathcal{H}_0 set of true nulls $R(t) = \{1 \le i \le t : p_i \le \alpha_i\}$ rejection set up to time $t \ge 1$

• Tool : FDP estimation $FDP(t) = \frac{\sum_{j \le t, j \in \mathcal{H}_0} \mathbf{1}_{p_j \le \alpha_j}}{1 \lor |R(t)|} \approx \frac{\sum_{j \le t, j \in \mathcal{H}_0} \alpha_j}{1 \lor |R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{1 \lor |R(t)|} := \widehat{FDP}(t)$

OMT procedure

Lemma [Ramdas et al., 2017]

For $\mathcal{A} = \{\alpha_t, t \ge 1\}$ s.t. $\forall t \ge 1, \sum_{j \le t} \alpha_j \le \alpha(1 \lor |\mathcal{R}(t)|), \mathsf{mFDR}(\mathcal{A}) \le \alpha$

- Standard procedure : Level based On Recent Discoveries (LORD) [Javanmard and Montanari, 2018, Ramdas et al., 2017]
- Baseline strategy: Generalized α -investing (GAI) [Foster and Stine, 2008] $\hookrightarrow \alpha$ wealth to pay errors

OMT procedure

Lemma [Ramdas et al., 2017]

For $\mathcal{A} = \{\alpha_t, t \ge 1\}$ s.t. $\forall t \ge 1, \sum_{j \le t} \alpha_j \le \alpha(1 \lor |\mathcal{R}(t)|), \text{ mFDR}(\mathcal{A}) \le \alpha$

- Standard procedure : Level based On Recent Discoveries (LORD) [Javanmard and Montanari, 2018, Ramdas et al., 2017]
- Baseline strategy: Generalized α -investing (GAI) [Foster and Stine, 2008] $\hookrightarrow \alpha$ wealth to pay errors

Super-uniformity

Classical setting

Adaptivity [Ramdas et al., 2018] Asynchronous setting [Zrnic et al., 2021] Power study [Chen and Arias-Castro, 2021]

One p-value at a time Uniform under the null $rac{1}{\tau_{1}}$ $rac{1}{\tau_{1}}$ $rac{1}{\tau_{1}}$ $rac{1}{\tau_{1}}$ $rac{1}{\tau_{1}}$ $rac{1}{\tau_{1}}$

Super-uniformity

$$F_t(u) = \mathbb{P}\left(p_t \leq u \mid \mathcal{F}_{t-1}\right) \leq u$$

a.s. for all
$$u \in [0,1]$$
, with $t \in \mathcal{H}_0$

 $\begin{array}{l} \mbox{Equality} \rightarrow \mbox{Uniform} \\ \mbox{Strict inequality} \rightarrow \mbox{over-conservativeness} \end{array}$

$$F_t(\alpha_t) := \mathbb{P}(p_t \le \alpha_t \mid \mathcal{F}_{t-1}) \le \underbrace{\tilde{\alpha}_t < \alpha_t}_{\text{over-conservativeness}}$$

 \longrightarrow Could be coped with F_t if known \hookrightarrow Typical case of discrete *p*-values : $\rho_t = \alpha_t - F_t(\alpha_t)$ explicit

Super-uniformity

$$F_t(u) = \mathbb{P}\left(p_t \leq u \mid \mathcal{F}_{t-1}\right) \leq u$$

a.s. for all
$$u \in [0,1]$$
, with $t \in \mathcal{H}_0$

 $\begin{array}{l} \mbox{Equality} \rightarrow \mbox{Uniform} \\ \mbox{Strict inequality} \rightarrow \mbox{over-conservativeness} \end{array}$

$$F_t(\alpha_t) := \mathbb{P}(p_t \leq \alpha_t \mid \mathcal{F}_{t-1}) \leq \underbrace{\tilde{\alpha}_t < \alpha_t}_{\text{over-conservativeness}}$$

 \longrightarrow Could be coped with F_t if known \hookrightarrow Typical case of discrete *p*-values : $\rho_t = \alpha_t - F_t(\alpha_t)$ explicit

Discrete *p*-values

- Fisher Exact Tests (FETs) for association studies
 - $\hookrightarrow X$: gene knocked out or not
 - Y: change phenotype or not

	Y = 1	Y = 0	Total
<i>X</i> = 0	<i>n</i> ₁₁	<i>n</i> ₁₂	<i>n</i> ₁ .
X = 1	n ₂₁	n ₂₂	n ₂ .
Total	n.1	n.2	n

• Also Poisson, Binomial tests...

Contribution

Super-uniformity reward

 \longrightarrow Re-incorporate $\rho_t = \alpha_t - F_t(\alpha_t)$ as reward

Theorem [Döhler, M. and Roquain (2021)]

For any procedure $\mathcal{A}^0=(lpha_t^0,t\geq 1)$ satisfying almost surely, for all $t\geq 1$,

 $\sum_{1 \leq j \leq t} \alpha_j^0 \leq \alpha \ (1 \lor R(t)),$

the rewarded procedure $\mathcal{A} = (\alpha_t, t \geq 1)$ defined by

$$\alpha_t = \alpha_t^{\mathbf{0}} + \sum_{1 \le j \le t-1} \gamma'_{t-j} (\alpha_j - F_j(\alpha_j))$$

with $\gamma' = (\gamma'_t)_{t \ge 1}$ sequence of non-negative values summing to one

controls online mFDR at level α under conditional validity
 uniformly dominates the base procedure A⁰

Proof intuition : $\widehat{\text{FDP}}(t) = \frac{\sum_{j \le t} F_j(\alpha_j)}{1 \lor |R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{1 \lor |R(t)|}$ tighter estimate

Contribution

Super-uniformity reward

 \longrightarrow Re-incorporate $\rho_t = \alpha_t - F_t(\alpha_t)$ as reward

Theorem [Döhler, M. and Roquain (2021)]

For any procedure $\mathcal{A}^0 = (\alpha_t^0, t \ge 1)$ satisfying almost surely, for all $t \ge 1$,

 $\sum_{1\leq j\leq t}\alpha_j^{\mathbf{0}}\leq \alpha \ (1\vee R(t)),$

the rewarded procedure $\mathcal{A}=(lpha_t,t\geq 1)$ defined by

$$\alpha_t = \alpha_t^{\mathsf{o}} + \sum_{1 \le j \le t-1} \gamma'_{t-j} (\alpha_j - F_j(\alpha_j))$$

with $\gamma' = (\gamma'_t)_{t \ge 1}$ sequence of non-negative values summing to one

controls online mFDR at level α under conditional validity
 uniformly dominates the base procedure A⁰

Proof intuition : $\widehat{\text{FDP}}(t) = \frac{\sum_{j \le t} F_j(\alpha_j)}{1 \lor |R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{1 \lor |R(t)|}$ tighter estimate

Contribution

Super-uniformity reward

 \longrightarrow Re-incorporate $\rho_t = \alpha_t - F_t(\alpha_t)$ as reward

Theorem [Döhler, M. and Roquain (2021)]

For any procedure $\mathcal{A}^0 = (\alpha_t^0, t \ge 1)$ satisfying almost surely, for all $t \ge 1$,

 $\sum_{1 \leq j \leq t} \alpha_j^{\mathbf{0}} \leq \alpha \ (1 \lor R(t)),$

the rewarded procedure $\mathcal{A} = (\alpha_t, t \geq 1)$ defined by

$$\alpha_t = \alpha_t^{\mathbf{0}} + \sum_{1 \le j \le t-1} \gamma'_{t-j} (\alpha_j - F_j(\alpha_j))$$

with $\gamma' = (\gamma'_t)_{t \geq 1}$ sequence of non-negative values summing to one

controls online mFDR at level α under conditional validity
 uniformly dominates the base procedure A⁰

Proof intuition : $\widehat{\text{FDP}}(t) = \frac{\sum_{j \le t} F_j(\alpha_j)}{1 \lor |R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{1 \lor |R(t)|}$ tighter estimate
Contribution

Super-uniformity reward

 \longrightarrow Re-incorporate $\rho_t = \alpha_t - F_t(\alpha_t)$ as reward

Theorem [Döhler, M. and Roquain (2021)]

For any procedure $\mathcal{A}^0 = (\alpha_t^0, t \ge 1)$ satisfying almost surely, for all $t \ge 1$,

 $\sum_{1 \leq j \leq t} \alpha_j^{\mathbf{0}} \leq \alpha \ (1 \lor \mathsf{R}(t)),$

the rewarded procedure $\mathcal{A} = (\alpha_t, t \geq 1)$ defined by

$$\alpha_t = \alpha_t^{\mathbf{0}} + \sum_{1 \le j \le t-1} \gamma'_{t-j} (\alpha_j - F_j(\alpha_j))$$

with $\gamma' = (\gamma'_t)_{t \geq 1}$ sequence of non-negative values summing to one

- controls online mFDR at level α under conditional validity
- uniformly dominates the base procedure \mathcal{A}^{0}

Proof intuition : $\widehat{\text{FDP}}(t) = \frac{\sum_{j \le t} F_j(\alpha_j)}{1 \lor |R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{1 \lor |R(t)|}$ tighter estimate

Contribution

Super-uniformity reward

 \longrightarrow Re-incorporate $\rho_t = \alpha_t - F_t(\alpha_t)$ as reward

Theorem [Döhler, M. and Roquain (2021)]

For any procedure $\mathcal{A}^0 = (\alpha_t^0, t \ge 1)$ satisfying almost surely, for all $t \ge 1$,

 $\sum_{1 \leq j \leq t} \alpha_j^{\mathbf{0}} \leq \alpha \ (1 \lor \mathsf{R}(t)),$

the rewarded procedure $\mathcal{A} = (\alpha_t, t \geq 1)$ defined by

$$\alpha_t = \alpha_t^{\mathbf{0}} + \sum_{1 \le j \le t-1} \gamma'_{t-j} (\alpha_j - F_j(\alpha_j))$$

with $\gamma' = (\gamma'_t)_{t \ge 1}$ sequence of non-negative values summing to one

- controls online mFDR at level α under conditional validity
- uniformly dominates the base procedure \mathcal{A}^{0}

Proof intuition : $\widehat{\text{FDP}}(t) = \frac{\sum_{j \le t} F_j(\alpha_j)}{|V|R(t)|} \le \frac{\sum_{j \le t} \alpha_j}{|V|R(t)|}$ tighter estimate

International Mice Phenotyping Consortium (IMPC) dataset
 → Study genotype effect on phenotype
 Is gene X related to eye color ?

 → In vivo study with gene knockout

- Benchmark dataset analyzed in online literature
- Analyzed using FETs

mFDR procedures	LORD	hoLORD	ALORD	hoALORD
<pre># discoveries (male)</pre>	882	972	972	1041
<pre># discoveries (female)</pre>	839	946	966	1046

Extensions

- Online *p*-value weighting using rewarding method
- Control online mFDR at stopping times
- FDR control by enforcing monotonous reward across time

Perspectives

- Power study
 - ightarrow Optimal smoothing sequence $(\gamma_t')_{t\geq 1}$
 - ightarrow Super-uniformity reward optimal for $\sum_{j \leq t} F_j(lpha_j) \leq lpha(1 ee |R(t)|)$?

Extensions

- Online *p*-value weighting using rewarding method
- Control online mFDR at stopping times
- FDR control by enforcing monotonous reward across time

Perspectives

- Power study
 - ightarrow Optimal smoothing sequence $(\gamma_t')_{t\geq 1}$
 - \rightarrow Super-uniformity reward optimal for $\sum_{j \leq t} F_j(\alpha_j) \leq \alpha(1 \vee |R(t)|)$?

Consistent false discovery proportion bounds Gilles Blanchard, Iqraa Meah, Etienne Roquain

[] arXiv:2306.07819, submitted

FDP confidence bounds

Quick background

Aim recall

For $R \in \mathcal{P}(\{1, \ldots, m\})$, provide upper bound $\overline{\mathsf{FDP}}(R)$ s.t

```
\mathsf{P}(\mathsf{FDP}(R) \leq \overline{\mathsf{FDP}}(R)) \geq 1 - \delta,
```

for some $\delta \in (0, 1)$

More informative = stronger statement than expectation

Posthoc confidence bounds

```
Design bounding function \overline{\mathsf{FDP}} valued in (0,1) s.t
```

 $\mathsf{P}(\forall R \in \mathcal{P}(\{1,\ldots,m\}),\mathsf{FDP}(R) \leq \overline{\mathsf{FDP}}(R)) \geq 1-\delta,$

for some $\delta \in (0, 1)$

+ More analysis freedom [Genovese and Wasserman, 2006] [Goeman and Solari, 2011]

FDP confidence bounds

Quick background

Aim recall

```
For R \in \mathcal{P}(\{1, \ldots, m\}), provide upper bound \overline{\mathsf{FDP}}(R) s.t
```

```
\mathsf{P}(\mathsf{FDP}(R) \leq \overline{\mathsf{FDP}}(R)) \geq 1 - \delta,
```

for some $\delta \in (0, 1)$

More informative = stronger statement than expectation

Posthoc confidence bounds

Design bounding function $\overline{\mathsf{FDP}}$ valued in (0,1) s.t

 $\mathsf{P}(\forall R \in \mathcal{P}(\{1, \dots, m\}), \mathsf{FDP}(R) \leq \overline{\mathsf{FDP}}(R)) \geq 1 - \delta,$

for some $\delta \in (0,1)$

+ More analysis freedom [Genovese and Wasserman, 2006] [Goeman and Solari, 2011]

Gain accuracy for set outputted by FDR procedure ?

Confidence bounds on a path [Katsevich and Ramdas, 2020] Design bounding function $\overline{\text{FDP}}$ valued in (0, 1) s.t $P(\forall R_k \in \Pi, \text{FDP}(R_k) \leq \overline{\text{FDP}}(R_k)) \geq 1 - \delta,$ for some $\delta \in (0, 1)$

 $\Pi = path \rightarrow underlying setting: Top-k, Pre-ordered, Online$

Gain accuracy for set outputted by FDR procedure ?

Confidence bounds on a path [Katsevich and Ramdas, 2020] Design bounding function $\overline{\text{FDP}}$ valued in (0, 1) s.t $P(\forall R_k \in \Pi, \text{FDP}(R_k) \le \overline{\text{FDP}}(R_k)) \ge 1 - \delta,$ for some $\delta \in (0, 1)$

 $\Pi = path \rightarrow underlying setting: Top-k, Pre-ordered, Online$

Gain accuracy for set outputted by FDR procedure ?

Confidence bounds on a path [Katsevich and Ramdas, 2020]

Design bounding function $\overline{\text{FDP}}$ valued in (0, 1) s.t

 $\mathsf{P}(\forall R_k \in \Pi, \mathsf{FDP}(R_k) \leq \overline{\mathsf{FDP}}(R_k)) \geq 1 - \delta,$

for some $\delta \in (0,1)$

 $\Pi = path \rightarrow underlying setting: Top-k, Pre-ordered, Online$

Martingale inequalities $\rightarrow \overline{\text{FDP}}(R_k) = \text{factor} \cdot \widehat{\text{FDP}}(R_k) + \text{remainder}$

Gain accuracy for set outputted by FDR procedure ?

Confidence bounds on a path [Katsevich and Ramdas, 2020]

Design bounding function $\overline{\text{FDP}}$ valued in (0, 1) s.t

 $\mathsf{P}(\forall R_k \in \Pi, \mathsf{FDP}(R_k) \leq \overline{\mathsf{FDP}}(R_k)) \geq 1 - \delta,$

for some $\delta \in (0,1)$

 $\Pi = path \rightarrow underlying setting: Top-k, Pre-ordered, Online$

Martingale inequalities $\rightarrow \overline{\text{FDP}}(R_k) = \text{factor} \cdot \widehat{\text{FDP}}(R_k) + \text{remainder}$

For $R_{\hat{k}_{\alpha}}$ output of FDR procedure at level α , $\overline{\text{FDP}}(R_{\hat{k}_{\alpha}}) \approx \alpha$?

Consistency for couple (FDR procedure, FDP bound) Formalism

Consistency [Blanchard, M. and Roquain (2023)]

 $orall\epsilon > 0, \ orall lpha_0 \in (0,1),$

$$\lim_{m\to\infty}\mathbb{P}^{(m)}\left(\sup_{\alpha\in[\alpha_0,1)}\left\{\overline{\mathsf{FDP}}_{\alpha}-\alpha\right\}\geq\epsilon\right)=0.$$

with $\overline{\text{FDP}}_{\alpha} = \overline{\text{FDP}}(R_{\hat{k}_{\alpha}})$ where $R_{\hat{k}_{\alpha}}$ output of FDR procedure at level α , and $\mathbb{P}^{(m)}$ sequence of standard models

 \hookrightarrow Today focus on (Knockoff, FDP bound)

Consistency for couple (FDR procedure, FDP bound) Formalism

Consistency [Blanchard, M. and Roquain (2023)]

 $orall\epsilon > 0, \ orall lpha_0 \in (0,1),$

$$\lim_{m \to \infty} \mathbb{P}^{(m)} \left(\sup_{\alpha \in [\alpha_0, 1)} \left\{ \overline{\mathsf{FDP}}_{\alpha} - \alpha \right\} \ge \epsilon \right) = 0.$$

with $\overline{\text{FDP}}_{\alpha} = \overline{\text{FDP}}(R_{\hat{k}_{\alpha}})$ where $R_{\hat{k}_{\alpha}}$ output of FDR procedure at level α , and $\mathbb{P}^{(m)}$ sequence of standard models

 \hookrightarrow Today focus on (Knockoff, FDP bound)

Pre-ordered path : $R_k = \{\pi(i) : 1 \le i \le k, \ p_{\pi(i)} \le s\} \mid \frac{1}{2} \frac{9}{11} \frac{6}{5} \frac{1}{2} \frac{9}{11} \frac{1}{5} \frac{9}{11} \frac{1}{5} \frac{1}{5} \frac{9}{11} \frac{1}{5} \frac{1}{5} \frac{9}{11} \frac{1}{5} \frac{1}$ $\hookrightarrow s \in (0, 1]$ signal zone threshold

Pre-ordered path : $R_k = \{\pi(i) : 1 \le i \le k, p_{\pi(i)} \le s\}$ $\hookrightarrow s \in (0, 1]$ signal zone threshold

$$\begin{split} \widehat{\mathsf{FDP}}(R_k) &= \widehat{\mathsf{FDP}}_k = \frac{s}{1-\lambda} \frac{1 + \sum_{i=1}^k 1\{p_{\pi(i)} > \lambda\}}{1 \vee \sum_{i=1}^k 1\{p_{\pi(i)} \le s\}} \quad \text{[Lei and Fithian, 2016]} \\ &\hookrightarrow \lambda \in (0, 1] \text{ error zone threshold} \end{split}$$

FDR procedure look for largest \hat{k}_{α} such that $\widehat{\mathsf{FDP}}_{\hat{k}_{\alpha}} \leq \alpha$

Encompasses [Barber and Candès, 2015] Knockoff procedure binary p-values and $\lambda = s = 1/2$

Pre-ordered path : $R_k = \{\pi(i) : 1 \le i \le k, p_{\pi(i)} \le s\}$ $\hookrightarrow s \in (0, 1]$ signal zone threshold

$$\widehat{\mathsf{FDP}}(R_k) = \widehat{\mathsf{FDP}}_k = \frac{s}{1-\lambda} \frac{1 + \sum_{i=1}^k \mathbb{1}\{p_{\pi(i)} > \lambda\}}{\mathbb{1} \vee \sum_{i=1}^k \mathbb{1}\{p_{\pi(i)} \le s\}} \quad [\text{Lei and Fithian, 2016}]$$
$$\hookrightarrow \lambda \in (0, 1] \text{ error zone threshold}$$

FDR procedure look for largest \hat{k}_{α} such that $\widehat{\text{FDP}}_{\hat{k}_{\alpha}} \leq \alpha$

Encompasses [Barber and Candès, 2015] Knockoff procedure binary p-values and $\lambda=s=1/2$

Proposed bounds

KR bound [Katsevich and Ramdas, 2020]

$$\overline{\mathsf{FDP}}_{k}^{\mathsf{KR}} = 1 \land \left(\frac{\log(1/\delta)}{a\log(1 + \frac{1-\delta^{B/a}}{B})} \frac{a + \frac{s}{1-\lambda} \sum_{i=1}^{k} \mathbb{1}\{p_{\pi(i)} > \lambda\}}{1 \lor \sum_{i=1}^{k} \mathbb{1}\{p_{\pi(i)} \le s\}} \right)$$

with $a \geq 1$ free parameter, $B = s/(1 - \lambda)$, and $\lambda \geq s$.

Default choice a = 1 suggested by KR.

KR-U bound (new) [Blanchard, M. and Roquain (2023)]

$$\overline{\mathsf{FDP}}_k^{\mathsf{KR}-\mathsf{U}} = 1 \wedge \min_{a \in \mathbb{N} \setminus \{0\}} \left\{ \frac{\log(1/\delta_a)}{a\log(1 + \frac{1-\delta_a^{B/a}}{B})} \frac{a + \frac{s}{1-\lambda} \sum_{i=1}^k \mathbb{1}\{p_{\pi(i)} > \lambda\}}{1 \vee \sum_{i=1}^k \mathbb{1}\{p_{\pi(i)} \leq s\}} \right\},$$

with $\delta_a = \delta/(\kappa a^2)$, $a \ge 1$, for $B = s/(1 - \lambda)$, $\kappa = \pi^2/6$.

 \rightarrow Our proposal : KR + union bound over $a \in \mathbb{N} \setminus \{0\}$

Proposed bounds

KR bound [Katsevich and Ramdas, 2020]

$$\overline{\mathsf{FDP}}_{k}^{\mathsf{KR}} = 1 \land \left(\frac{\log(1/\delta)}{a\log(1 + \frac{1-\delta^{B/a}}{B})} \frac{a + \frac{s}{1-\lambda} \sum_{i=1}^{k} \mathbb{1}\{p_{\pi(i)} > \lambda\}}{1 \lor \sum_{i=1}^{k} \mathbb{1}\{p_{\pi(i)} \le s\}} \right)$$

with $a \geq 1$ free parameter, $B = s/(1 - \lambda)$, and $\lambda \geq s$.

Default choice a = 1 suggested by KR.

KR-U bound (new) [Blanchard, M. and Roquain (2023)]

$$\overline{\mathsf{FDP}}_{k}^{\mathsf{KR}-\mathsf{U}} = 1 \wedge \min_{a \in \mathbb{N} \setminus \{0\}} \left\{ \frac{\log(1/\delta_{a})}{a\log(1 + \frac{1-\delta_{a}^{B/a}}{B})} \frac{a + \frac{s}{1-\lambda} \sum_{i=1}^{k} \mathbb{1}\{p_{\pi(i)} > \lambda\}}{1 \vee \sum_{i=1}^{k} \mathbb{1}\{p_{\pi(i)} \leq s\}} \right\},$$

with $\delta_a = \delta/(\kappa a^2)$, $a \ge 1$, for $B = s/(1 - \lambda)$, $\kappa = \pi^2/6$.

 \rightarrow Our proposal : KR + union bound over $a \in \mathbb{N} \setminus \{0\}$

 $\overline{\mathsf{FDP}}_{\alpha} = \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) \text{ with } R_{\hat{k}_{\alpha}} \text{ output of Knockoff at level } \alpha \in (0,1)$ $\hookrightarrow \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) = \mathsf{factor} \cdot \alpha + \mathsf{remainder}/\hat{r}_{\alpha}, \text{ with } \hat{r}_{\alpha} = \# \text{ rejections}$

KR bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR}}_{\alpha} = 1 \land \left(\frac{\log(1/\delta)}{\log(1 + \frac{1 - \delta^B}{B})} \left(\alpha + 1/(1 \lor \hat{r}_{\alpha}) \right) \right)$$

 \hookrightarrow Incompressible constant o no consistency

KR-U bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR}\mathsf{-U}}_{\alpha} = 1 \wedge \min_{1 \leq a \leq 1 \lor \hat{r}_{\alpha}} \left\{ \frac{\log(1/\delta_{a})}{a \log(1 + \frac{1 - \delta_{a}}{B})} \left(\alpha + a/(1 \lor \hat{r}_{\alpha}) \right) \right\}$$

 $\overline{\mathsf{FDP}}_{\alpha} = \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) \text{ with } R_{\hat{k}_{\alpha}} \text{ output of Knockoff at level } \alpha \in (0,1)$ $\hookrightarrow \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) = \mathsf{factor} \cdot \alpha + \mathsf{remainder}/\hat{r}_{\alpha}, \text{ with } \hat{r}_{\alpha} = \# \text{ rejections}$

KR bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR}}_{\alpha} = 1 \land \left(\frac{\log(1/\delta)}{\log(1 + \frac{\mathbf{1} - \delta^B}{B})} \left(\alpha + 1/(1 \lor \hat{r}_{\alpha}) \right) \right)$$

 $\hookrightarrow \mathsf{Incompressible\ constant} \to \mathsf{no\ consistency}$

KR-U bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR-U}}_{\alpha} = 1 \wedge \min_{1 \leq a \leq 1 \lor \hat{r}_{\alpha}} \left\{ \frac{\log(1/\delta_a)}{a \log(1 + \frac{1 - \delta_a}{B})} \left(\alpha + a/(1 \lor \hat{r}_{\alpha}) \right) \right\}$$

 $\overline{\mathsf{FDP}}_{\alpha} = \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) \text{ with } R_{\hat{k}_{\alpha}} \text{ output of Knockoff at level } \alpha \in (0,1)$ $\hookrightarrow \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) = \mathsf{factor} \cdot \alpha + \mathsf{remainder}/\hat{r}_{\alpha}, \text{ with } \hat{r}_{\alpha} = \# \text{ rejections}$

KR bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR}}_{\alpha} = 1 \land \left(\frac{\log(1/\delta)}{\log(1 + \frac{\mathbf{1} - \delta^B}{B})} \left(\alpha + 1/(1 \lor \hat{r}_{\alpha}) \right) \right)$$

 $\hookrightarrow \mathsf{Incompressible\ constant} \to \mathsf{no\ consistency}$

KR-U bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR}\mathsf{-}\mathsf{U}}_{\alpha} = 1 \wedge \mathsf{min}_{1 \leq \mathfrak{s} \leq 1 \lor \hat{r}_{\alpha}} \left\{ \frac{\log(1/\delta_{\mathfrak{s}})}{\mathfrak{s} \log(1 + \frac{1 - \delta_{\mathfrak{s}}^{B/\mathfrak{s}}}{B})} \left(\alpha + \mathfrak{s}/(1 \lor \hat{r}_{\alpha}) \right) \right\}$$

 $\overline{\mathsf{FDP}}_{\alpha} = \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) \text{ with } R_{\hat{k}_{\alpha}} \text{ output of Knockoff at level } \alpha \in (0,1)$ $\hookrightarrow \overline{\mathsf{FDP}}(R_{\hat{k}_{\alpha}}) = \mathsf{factor} \cdot \alpha + \mathsf{remainder}/\hat{r}_{\alpha}, \text{ with } \hat{r}_{\alpha} = \# \text{ rejections}$

KR bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR}}_{\alpha} = 1 \land \left(\frac{\log(1/\delta)}{\log(1 + \frac{\mathbf{1} - \delta^B}{B})} \left(\alpha + 1/(1 \lor \hat{r}_{\alpha}) \right) \right)$$

 $\hookrightarrow \mathsf{Incompressible\ constant} \to \mathsf{no\ consistency}$

KR-U bound

$$\overline{\mathsf{FDP}}^{\mathsf{KR}\mathsf{-}\mathsf{U}}_{\alpha} = 1 \wedge \min_{1 \leq \mathfrak{a} \leq 1 \lor \hat{r}_{\alpha}} \left\{ \frac{\log(1/\delta_{\mathfrak{a}})}{\mathfrak{a}\log(1 + \frac{1 - \delta_{\mathfrak{a}}^{B/\mathfrak{a}}}{B})} \left(\alpha + \mathfrak{a}/(1 \lor \hat{r}_{\alpha})\right) \right\}$$

Illustration

[Lei and Fithian, 2016] VCT model

- Local alternative π(i) = 1/2 + (0 ∨ 1/2(^{z-i}/_{z-1})),

 → z > 1 tells how slowly probability of observing signal deteriorates
- Binary *p*-values : Under the null $p_i = 1/2$ or 1 with equal probability. Under the alternative, $p_i = 1/2$ with probability 0.9 and $p_i = 1$ otherwise.

Illustration

[Lei and Fithian, 2016] VCT model

- Local alternative π(i) = 1/2 + (0 ∨ 1/2(^{z-i}/_{z-1})),

 → z > 1 tells how slowly probability of observing signal deteriorates
- Binary *p*-values : Under the null $p_i = 1/2$ or 1 with equal probability. Under the alternative, $p_i = 1/2$ with probability 0.9 and $p_i = 1$ otherwise.

Other covered settings:

- top-k: consistency for (BH, FDP bounds) Uniform improvement by π₀-estimation
- online : consistency for (LORD, FDP bounds)

A unifying class of $\pi_{\rm 0}$ estimators with plug-in FDR control Sebastian Döhler, Iqraa Meah

arXiv:2307.13557, In revision for Biometrical Journal

Unifying class of π_0 estimators with plug-in FDR control

 $m_0 = |\mathcal{H}_0| \; \#$ true nulls $\pi_0 = \frac{m_0}{m}$ proportion of true nulls

 $\begin{aligned} \mathsf{FDR}(\mathsf{BH}_{\alpha}) &= \pi_0 \alpha \ll \alpha \text{ if dense signal} \\ \mathsf{FDR}(\mathsf{BH}_{\alpha/\pi_0}) &= \alpha \text{ nice but } \pi_0 \text{ unknown} \\ \mathsf{FDR}(\mathsf{BH}_{\alpha/\hat{\pi}_0}) &\leq \alpha \\ &\hookrightarrow \text{ sufficient condition for plug-in FDR control}: \quad [Benjamini et al., 2006] \end{aligned}$

[Blanchard and Roquain, 2009] (BR)

Contribution: general class of estimators verifying (BR) condition

- \hookrightarrow encompasses existing + new estimators
- \hookrightarrow allows adaptation to discreteness

Perspective : discrete BH with discrete (BR) condition

Unifying class of π_0 estimators with plug-in FDR control

 $m_0 = |\mathcal{H}_0| \; \#$ true nulls $\pi_0 = \frac{m_0}{m}$ proportion of true nulls

 $\begin{array}{l} \mathsf{FDR}(\mathsf{BH}_{\alpha}) = \pi_{0} \alpha \ll \alpha \text{ if dense signal} \\ \mathsf{FDR}(\mathsf{BH}_{\alpha/\pi_{0}}) = \alpha \text{ nice but } \pi_{0} \text{ unknown} \\ \mathsf{FDR}(\mathsf{BH}_{\alpha/\hat{\pi}_{0}}) \leq \alpha \\ \hookrightarrow \text{ sufficient condition for plug-in FDR control}: \quad [\mathsf{Benjamini et al., 2006}] \\ [\mathsf{Blanchard and Roquain, 2009]} \quad (\mathsf{BR}) \end{array}$

Contribution: general class of estimators verifying (BR) condition

- \hookrightarrow encompasses existing + new estimators
- \hookrightarrow allows adaptation to discreteness

Perspective : discrete BH with discrete (BR) condition

Unifying class of π_0 estimators with plug-in FDR control

 $m_0 = |\mathcal{H}_0| \ \#$ true nulls $\pi_0 = rac{m_0}{m}$ proportion of true nulls

 $\begin{array}{l} \mathsf{FDR}(\mathsf{BH}_{\alpha}) = \pi_{0} \alpha \ll \alpha \text{ if dense signal} \\ \mathsf{FDR}(\mathsf{BH}_{\alpha/\pi_{0}}) = \alpha \text{ nice but } \pi_{0} \text{ unknown} \\ \mathsf{FDR}(\mathsf{BH}_{\alpha/\hat{\pi}_{0}}) \leq \alpha \\ \hookrightarrow \text{ sufficient condition for plug-in FDR control}: \quad [\mathsf{Benjamini et al., 2006}] \\ [\mathsf{Blanchard and Roquain, 2009]} \quad (\mathsf{BR}) \end{array}$

Contribution: general class of estimators verifying (BR) condition

- \hookrightarrow encompasses existing + new estimators
- \hookrightarrow allows adaptation to discreteness

Perspective : discrete BH with discrete (BR) condition

Conclusion

General perspectives :

• Power studies

For optimal parameters \hookrightarrow challenging in online and discrete setting

• Relax independence

E-value based testing \rightarrow discrete E-values ?

Thank you for your attention !

Controlling the false discovery rate via knockoffs.

The Annals of Statistics, 43(5):2055–2085.

Benjamini, Y. and Hochberg, Y. (1995).

Controlling the false discovery rate: A practical and powerful approach to multiple testing.

Journal of the Royal Statistical Society. Series B, 57(1):289–300.

Benjamini, Y., Krieger, A. M., and Yekutieli, D. (2006).

Adaptive linear step-up procedures that control the false discovery rate.

```
Biometrika, 93(3):491-507.
```

Blanchard, G. and Roquain, É. (2009).

Adaptive false discovery rate control under independence and dependence.

Journal of Machine Learning Research, 10(12).

Chen, S. and Arias-Castro, E. (2021).

On the power of some sequential multiple testing procedures.

Ann. Inst. Stat. Math., 73(2):311-336.

Foster, D. P. and Stine, R. A. (2008).

Alpha-investing: a procedure for sequential control of expected false discoveries.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(2):429–444.

Genovese, C. R. and Wasserman, L. (2006).

Exceedance control of the false discovery proportion.

Journal of the American Statistical Association, 101(476):1408–1417.

Multiple testing for exploratory research.

Statistical Science, 26(4):584–597.

Ignatiadis, N., Klaus, B., Zaugg, J. B., and Huber, W. (2016).

Data-driven hypothesis weighting increases detection power in genome-scale multiple testing.

Nature methods, 13(7):577-580.

Online rules for control of false discovery rate and false discovery exceedance.

The Annals of statistics, 46(2):526–554.

Simultaneous high-probability bounds on the false discovery proportion in structured, regression and online settings.

The Annals of Statistics, 48(6):3465-3487.

```
Lei, L. and Fithian, W. (2016).
```

Power of ordered hypothesis testing.

PMLR.

Ramdas, A., Yang, F., Wainwright, M. J., and Jordan, M. I. (2017).

Online control of the false discovery rate with decaying memory.

Advances in neural information processing systems, 30.

Ramdas, A., Zrnic, T., Wainwright, M. J., and Jordan, M. I. (2018).

SAFFRON: an adaptive algorithm for online control of the false discovery rate.

In Dy, J. G. and Krause, A., editors, *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,* volume 80 of *Proceedings of Machine Learning Research*, pages 4283–4291. PMLR.

Zrnic, T., Ramdas, A., and Jordan, M. I. (2021).

Asynchronous online testing of multiple hypotheses.

J. Mach. Learn. Res., 22:33:1–33:39.

Online *p*-value weighting

P-value weighting : ease rejection when confident

Test on
$$\tilde{p}_t = p_t / (w_t) \rightarrow \text{prior knowledge}$$

 $\Leftrightarrow \text{Test } p_t \text{ with } \alpha_t w_t$

Well studied offline $\rightarrow (w_t)_{1 \le t \le m}$ unit mean, not obvious online Only solution [Ramdas et al., 2017] \rightarrow no rescaling (called wGAI)

 w_t inflates current investment if confident in rejection

 \rightarrow preserve wealth but less rejection reward to keep mFDR control

Online *p*-value weighting using super-uniformity

[Döhler, M. and Roquain (2021)]

Idea: enforce super-uniformity with $w_t \in (0,1)$

- \hookrightarrow Use only part of α_t if no confidence in rejection
- \rightarrow re-incorporate what was not used

mFDR procedures	LORD	wGAI	wLORD (new)
# discoveries	3550	1308	3875

Proof of concept on "airway" data set, with weights taken from

Monotonicity of online procedure

 α_t is a coordinate-wise nondecreasing function of past decisions:

Monotonicity if $\tilde{R}_i \ge R_i$ for all $i \le t - 1$, then we have $\alpha_t(\tilde{R}_1, \dots, \tilde{R}_{t-1}) \ge \alpha_t(R_1, \dots, R_{t-1})$

Rewarded procedures non monotone

Enforce monotonicity : look for "least favorable" super-uniformity reward over all possible past rejection sequences \rightarrow intractable

Estimator $\widehat{\text{FDP}}$ with adaptivity

Estimator FDP with adaptivity

$$\widehat{\mathsf{FDP}}_{\lambda}(T,\mathcal{A}) = \frac{\alpha_T + \sum_{\substack{1 \le t \le T-1, \\ p_t \ge \lambda}} F_t(\alpha_t)}{(1-\lambda)(1 \lor R(T))},$$

with $\lambda \in [0,1)$

 \rightarrow Intuition: count only for $p\mbox{-values}$ above λ because these are potentially true nulls

Stopping time control for rewarded procedures

Define the stopping time τ as any r.v taking values in $\{1,2,\dots\}$ with

- $\tau < +\infty$ almost surely;
- $\{\tau = t\} \in \mathcal{F}_t$ for all $t \ge 1$.

Stopping time control

Consider a stopping time τ as above. For any procedure $\mathcal{A} = (\alpha_t, t \ge 1)$, if for some $\lambda \in [0, 1)$ we have $\sup_{T>1} \widehat{\mathsf{FDP}}_{\lambda}(\mathcal{A}) \le \alpha$ then $\mathsf{mFDR}_{\tau}(\mathcal{A}) \le \alpha$.

 \rightarrow Proof:

$$M_{t} = \sum_{i \leq t, i \in \mathcal{H}_{0}} \left(1\left\{ p_{i} \leq \alpha_{i} \right\} - \frac{1\left\{ p_{i} > \lambda \right\}}{1 - \lambda} F_{i}\left(\alpha_{i}\right) \right), \quad t \geq 1$$

is a super-martingale.

Online Bonferroni

$$\alpha_t = \alpha \gamma_t \quad \forall t \ge 1$$

with $\{\gamma_t\}_{t\geq 1}$ a nonnegative sequence summing to one

- Controls online FWER \Rightarrow controls online mFDR
- α_t decrease quickly \rightarrow low power, no discoveries in long run
- Idea : scale budget by # rejections

Level based On Recent Discoveries (LORD) [Javanmard and Montanari, 2018, Ramdas et al., 2017]

$$\alpha_t = W_0 \gamma_t + (\alpha - W_0) \gamma_{t-\tau_1} + \alpha \sum_{j \ge 2} \gamma_{t-\tau_j} \quad \forall t \ge 1$$

with $W_0 \in [0, \alpha]$ an initial wealth, and τ_j time of the j^{th} discovery

Spending procedure for FWER control

 $\alpha_1 = \alpha \gamma_1$ $\alpha_2 = \alpha \gamma_2$ $\alpha_3 = \alpha \gamma_3$ \vdots

Investing procedures for mFDR control

$$\begin{aligned} \alpha_1 &= W_0 \gamma_1 \\ \alpha_2 &= W_0 \gamma_2 \quad \text{rejection} \\ \alpha_3 &= W_0 \gamma_3 + (\alpha - W_0) \gamma_1 \\ \alpha_4 &= W_0 \gamma_4 + (\alpha - W_0) \gamma_2 \quad \text{rejection} \\ \alpha_5 &= W_0 \gamma_5 + (\alpha - W_0) \gamma_3 + \alpha \gamma_1 \\ \vdots \end{aligned}$$

• Fisher Exact Tests (FETs) for association studies

 $\hookrightarrow X$: gene knocked out or not

Y: change phenotype or not

	Y = 1	Y = 0	Total
X = 0	n ₁₁	<i>n</i> ₁₂	<i>n</i> ₁ .
X = 1	n ₂₁	<i>n</i> ₂₂	n ₂ .
Total	n.1	n.2	n

Discreteness level

Discreteness level

Numerical results on simulated data Signal strength

Signal position

Discrete *p*-values Permutation test

• Permutation tests

$$egin{aligned} p(X) &= (B+1)^{-1} \left(1 + \sum_{b=1}^B \mathbbm{1} \left\{ S\left(X^{\sigma_b}
ight) \geq S(X)
ight\}
ight) \ &\mathbb{P}(p(X) \leq s) \leq F(s) = rac{\lfloor (B+1)s
floor}{B+1} \end{aligned}$$

Unifying class of π_0 estimators with plug-in FDR control $_{\rm Bias\ inflation}$

$$\mathsf{Bias}(\hat{m}_0^{\mathsf{Storey}}) = \frac{1}{1-\lambda} + \frac{1}{1-\lambda} \left(\sum_{i \in \mathcal{H}_0} \mathbb{E}[1_{\rho_i > \lambda}] + \sum_{i \in \mathcal{H}_1} \mathbb{E}[1_{\rho_i > \lambda}] \right) - m_0$$

• Under Uniform setting

$$rac{1}{1-\lambda} + rac{1}{1-\lambda} \left(\sum_{i \in \mathcal{H}_1} \mathbb{E}[\mathbf{1}_{
ho_i > \lambda}]
ight)$$

• Under Discrete setting

$$\frac{1}{1-\lambda} + \frac{1}{1-\lambda} \left(\sum_{i \in \mathcal{H}_0} 1 - F_i(\lambda) + \sum_{i \in \mathcal{H}_1} \mathbb{E}[1_{\rho_i > \lambda}] \right) - m_0$$